"
],
"text/plain": [
" A B\n",
"2023-01-01 1.0 10.0\n",
"2023-01-02 10.0 100.0\n",
"2023-01-03 NaN 20.0\n",
"2023-01-04 20.0 200.0\n",
"2023-01-05 3.0 30.0\n",
"2023-01-06 NaN NaN\n",
"2023-01-07 4.0 40.0\n",
"2023-01-08 40.0 400.0\n",
"2023-01-09 5.0 50.0\n",
"2023-01-10 50.0 500.0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Merged DataFrame with Selected Columns A merges that column ([A,B] would have been OK too)\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
\n",
" \n",
" \n",
"
\n",
"
2023-01-01
\n",
"
1.0
\n",
"
\n",
"
\n",
"
2023-01-02
\n",
"
10.0
\n",
"
\n",
"
\n",
"
2023-01-03
\n",
"
NaN
\n",
"
\n",
"
\n",
"
2023-01-04
\n",
"
20.0
\n",
"
\n",
"
\n",
"
2023-01-05
\n",
"
3.0
\n",
"
\n",
"
\n",
"
2023-01-06
\n",
"
NaN
\n",
"
\n",
"
\n",
"
2023-01-07
\n",
"
4.0
\n",
"
\n",
"
\n",
"
2023-01-08
\n",
"
40.0
\n",
"
\n",
"
\n",
"
2023-01-09
\n",
"
5.0
\n",
"
\n",
"
\n",
"
2023-01-10
\n",
"
50.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A\n",
"2023-01-01 1.0\n",
"2023-01-02 10.0\n",
"2023-01-03 NaN\n",
"2023-01-04 20.0\n",
"2023-01-05 3.0\n",
"2023-01-06 NaN\n",
"2023-01-07 4.0\n",
"2023-01-08 40.0\n",
"2023-01-09 5.0\n",
"2023-01-10 50.0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Spliced Series with Renamed Column:\n"
]
},
{
"data": {
"text/plain": [
"2023-01-01 1.0\n",
"2023-01-02 10.0\n",
"2023-01-04 20.0\n",
"2023-01-06 30.0\n",
"2023-01-08 NaN\n",
"2023-01-10 50.0\n",
"Name: Renamed_A, dtype: float64"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Example: Using `names` to rename output columns\n",
"print(\"Original univariate series\")\n",
"print(series1)\n",
"print(series2)\n",
"\n",
"# Merging univariate with different names and using names to rename\n",
"merged_series_named = ts_merge((series1, series2), names=[\"C\"])\n",
"print(\"Merged univariate series renamed:\")\n",
"display(merged_series_named)\n",
"\n",
"\n",
"# Select specific columns in DataFrame\n",
"try:\n",
" merged_df_named = ts_merge((df1, df2, df3), names=None)\n",
"except:\n",
" print(\"Merged DataFrame without Selected Columns (names=None) results in an error if the columns don't match\")\n",
"#display(merged_df_named)\n",
"\n",
"# Select specific columns in DataFrame\n",
"merged_df_named = ts_merge((df1, df2), names=None)\n",
"print(\"Merged DataFrame without selected columns (names=None) for input DataFrames with matched columns:\")\n",
"display(merged_df_named)\n",
"\n",
"\n",
"# Select specific columns in DataFrame\n",
"merged_df_named = ts_merge((df1, df2, df3), names=[\"A\"])\n",
"print(\"Merged DataFrame with Selected Columns A merges that column ([A,B] would have been OK too)\")\n",
"display(merged_df_named)\n",
"\n",
"\n",
"# Rename column in splicing\n",
"spliced_series_named = ts_splice((series1, series2), names=\"Renamed_A\", transition=\"prefer_last\")\n",
"print(\"Spliced Series with Renamed Column:\")\n",
"display(spliced_series_named)\n"
]
},
{
"cell_type": "markdown",
"id": "6baebda5",
"metadata": {},
"source": [
"## Summary\n",
"- **Use `ts_merge`** when you want to blend time series together, filling missing values in order of priority.\n",
"- **Use `ts_splice`** when you want to keep each time series separate and transition from one to another based on time.\n",
"- **The `names` argument** allows you to rename output columns or select specific columns when merging/splicing DataFrames.\n",
"\n",
"This notebook provides a clear comparison to help you decide which method best suits your use case.\n"
]
},
{
"cell_type": "markdown",
"id": "d615df22",
"metadata": {},
"source": [
"# `ts_merge`: strict priority option\n",
"**New option**: `strict_priority` (default `False`) enforces that a higher‑priority series dominates between its `first_valid_index` and `last_valid_index`.\n",
"\n",
"**Semantics**\n",
"- Per **column**, define the dominance window as `[first_valid_index, last_valid_index]`.\n",
"- Within that window, lower‑priority series are **masked**, even if the higher‑priority value is `NaN`.\n",
"- Outside those windows, merging is unchanged and lower priority may contribute.\n",
"- With irregular inputs, timestamps that exist **only** in lower‑priority series **and** are fully masked inside a dominance window are dropped; timestamps from the top series' index are preserved even if all‑`NaN`.\n",
"\n",
"**`names` behavior** is unchanged.\n",
"### Example 1 — Series with interior `NaN`\n",
"\n",
"```python\n",
"import numpy as np, pandas as pd\n",
"from vtools.functions.merge import ts_merge\n",
"\n",
"idx1 = pd.date_range(\"2023-01-01\", periods=5, freq=\"D\")\n",
"idx2 = pd.date_range(\"2023-01-03\", periods=5, freq=\"D\")\n",
"s1 = pd.Series([1, 2, np.nan, 4, 5], index=idx1, name=\"A\")\n",
"s2 = pd.Series([10, 20, 30, np.nan, 50], index=idx2, name=\"A\")\n",
"\n",
"ts_merge((s1, s2)) # default\n",
"ts_merge((s1, s2), strict_priority=True)\n",
"```\n",
"### Example 2 — Two columns, per‑column dominance\n",
"\n",
"```python\n",
"idx1 = pd.date_range(\"2023-01-01\", periods=5, freq=\"D\")\n",
"idx2 = pd.date_range(\"2023-01-03\", periods=5, freq=\"D\")\n",
"df1 = pd.DataFrame({\"A\":[1., np.nan, 3., 4., 5.]}, index=idx1)\n",
"df1[\"B\"] = df1[\"A\"]\n",
"df1.loc[idx1[2], \"B\"] = np.nan # interior NaN in high‑priority B\n",
"df2 = pd.DataFrame({\"A\":[10., 20., np.nan, 40., 50.]}, index=idx2)\n",
"df2[\"B\"] = df2[\"A\"]\n",
"\n",
"ts_merge((df1, df2), strict_priority=True)[[\"A\",\"B\"]]\n",
"```\n",
"### Example 3 — Irregular inputs\n",
"\n",
"```python\n",
"idx1 = pd.to_datetime([\"2023-01-01\",\"2023-01-03\",\"2023-01-07\",\"2023-01-10\"])\n",
"idx2 = pd.to_datetime([\"2023-01-02\",\"2023-01-04\",\"2023-01-08\",\"2023-01-11\"])\n",
"s1 = pd.Series([1.,2.,3.,4.], index=idx1, name=\"A\")\n",
"s2 = pd.Series([10.,20.,30.,40.], index=idx2, name=\"A\")\n",
"\n",
"ts_merge((s1, s2), strict_priority=True)\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "d31654ba",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 1 strict=False:\n",
"2023-01-01 1.0\n",
"2023-01-02 2.0\n",
"2023-01-03 10.0\n",
"2023-01-04 4.0\n",
"2023-01-05 5.0\n",
"2023-01-06 NaN\n",
"2023-01-07 50.0\n",
"Freq: D, Name: A, dtype: float64\n",
"Example 1 strict=True:\n",
"2023-01-01 1.0\n",
"2023-01-02 2.0\n",
"2023-01-03 NaN\n",
"2023-01-04 4.0\n",
"2023-01-05 5.0\n",
"2023-01-06 NaN\n",
"2023-01-07 50.0\n",
"Freq: D, Name: A, dtype: float64\n",
"\n",
"Example 2 strict=True:\n",
" A B\n",
"2023-01-01 1.0 1.0\n",
"2023-01-02 NaN NaN\n",
"2023-01-03 3.0 NaN\n",
"2023-01-04 4.0 4.0\n",
"2023-01-05 5.0 5.0\n",
"2023-01-06 40.0 40.0\n",
"2023-01-07 50.0 50.0\n",
"\n",
"Example 3 strict=True:\n",
"2023-01-01 1.0\n",
"2023-01-03 2.0\n",
"2023-01-07 3.0\n",
"2023-01-10 4.0\n",
"2023-01-11 40.0\n",
"Name: A, dtype: float64\n"
]
}
],
"source": [
"import numpy as np, pandas as pd\n",
"from vtools.functions.merge import ts_merge\n",
"\n",
"# Example 1\n",
"idx1 = pd.date_range(\"2023-01-01\", periods=5, freq=\"D\")\n",
"idx2 = pd.date_range(\"2023-01-03\", periods=5, freq=\"D\")\n",
"s1 = pd.Series([1, 2, np.nan, 4, 5], index=idx1, name=\"A\")\n",
"s2 = pd.Series([10, 20, 30, np.nan, 50], index=idx2, name=\"A\")\n",
"print(\"Example 1 strict=False:\")\n",
"print(ts_merge((s1, s2)))\n",
"print(\"Example 1 strict=True:\")\n",
"print(ts_merge((s1, s2), strict_priority=True))\n",
"\n",
"# Example 2\n",
"df1 = pd.DataFrame({\"A\":[1., np.nan, 3., 4., 5.]}, index=idx1)\n",
"df1[\"B\"] = df1[\"A\"]; df1.loc[idx1[2], \"B\"] = np.nan\n",
"df2 = pd.DataFrame({\"A\":[10., 20., np.nan, 40., 50.]}, index=idx2)\n",
"df2[\"B\"] = df2[\"A\"]\n",
"print(\"\\nExample 2 strict=True:\")\n",
"print(ts_merge((df1, df2), strict_priority=True)[[\"A\",\"B\"]])\n",
"\n",
"# Example 3\n",
"idx1i = pd.to_datetime([\"2023-01-01\",\"2023-01-03\",\"2023-01-07\",\"2023-01-10\"])\n",
"idx2i = pd.to_datetime([\"2023-01-02\",\"2023-01-04\",\"2023-01-08\",\"2023-01-11\"])\n",
"s1i = pd.Series([1.,2.,3.,4.], index=idx1i, name=\"A\")\n",
"s2i = pd.Series([10.,20.,30.,40.], index=idx2i, name=\"A\")\n",
"print(\"\\nExample 3 strict=True:\")\n",
"print(ts_merge((s1i, s2i), strict_priority=True))\n"
]
},
{
"cell_type": "markdown",
"id": "77eb1ac4",
"metadata": {},
"source": [
"## Blending near gaps: `ts_blend`\n",
"\n",
"The functions shown above (`ts_merge` and `ts_splice`) perform *hard* selections:\n",
"\n",
"- **`ts_merge`** picks the first non-NaN value in priority order at each timestamp.\n",
"- **`ts_splice`** constructs a piecewise record by switching sources at explicit transition times.\n",
"\n",
"In some workflows, however, abrupt switches in the merged product create undesirable jumps.\n",
"Often the *higher-priority* series is preferred, but it may contain gaps. In those regions it is\n",
"useful to **fade in** the lower-priority series near the edges of gaps rather than switching\n",
"immediately.\n",
"\n",
"`ts_blend` implements exactly that:\n",
"\n",
"- Takes a list of Series/DataFrames (higher priority first).\n",
"- Aligns them onto a common union index.\n",
"- Inside gaps of the high-priority series: **falls back** to lower-priority data (just like `ts_merge`).\n",
"- On the *shoulders* of gaps: computes the **distance to the nearest gap** in the high-priority\n",
" series and applies a smooth kernel.\n",
"\n",
"For a gap-edge point with distance $d$ from the nearest NaN and a user-specified blending\n",
"radius $L$:\n",
"\n",
"$$\n",
"\\tilde t = \\frac{L - d}{L}, \\qquad\n",
"w_{\\mathrm{lo}} = 0.5 \\tilde t, \\qquad\n",
"w_{\\mathrm{hi}} = 1 - w_{\\mathrm{lo}}.\n",
"$$\n",
"\n",
"Thus:\n",
"\n",
"- Points *at* the gap edge blend in up to **50%** of the lower-priority value.\n",
"- Points farther than `blend_length` away use **100%** of the high-priority value.\n",
"- Inside gaps, the lower-priority series is used exactly.\n",
"- If the lower-priority series is also missing at some point, the output remains NaN.\n",
"\n",
"`blend_length` can be:\n",
"\n",
"- an **integer** → interpreted as a *number of samples*, or\n",
"- a **timedelta-like string** (e.g. `\"2h\"`, `\"1d\"`) → interpreted as a time window\n",
" (requires a regular `DatetimeIndex` with `.freq` set).\n",
"\n",
"Setting `blend_length=None` makes `ts_blend` behave like a standard priority merge.\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "d4eca9fc",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJNCAYAAAAs3xZxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAx4hJREFUeJzs3XdYU9cbB/Bvwt4IgoAyXYiKqLiVoda9f3W0WveoG1Frl4p7VQW1aq2ziqNWbd2z4raKW6HiABcgKntDcn9/UCKRhKEQ1vfzPDxtzn3vvW+SE+TNvecckSAIAoiIiIiIiIioyIlLOgEiIiIiIiKi8opFNxEREREREVExYdFNREREREREVExYdBMREREREREVExbdRERERERERMWERTcRERERERFRMWHRTURERERERFRMWHQTERERERERFRMW3URERERERETFhEU3EZVKW7duhUgkkvsxMzODh4cHDh8+nCteJBLBx8dH9YkCGDp0KOzs7EpNPlQ62dnZYejQobLH4eHh8PHxwe3bt3PFDh06FPr6+h99rrVr12Lr1q0fvX9ewsLCIBKJ8NNPP+Ubm/05DgsLK5Zc8lOYz+GFCxegpaWFZ8+eydrs7OzQrVu3fPfNfk2K6zXPj4eHBzw8PIp9n+KkrM8GBARAJBLhjz/+KLZzr1q1Cs2bN0flypWhpaUFGxsbDBgwAA8ePJCLCwkJgaamJm7evFlsuRBR+aRe0gkQEeVly5YtcHR0hCAIiIyMxJo1a9C9e3ccPHgQ3bt3L+n0lLpy5QqqVatW0mlQKXLgwAEYGhrKHoeHh2POnDmws7ODi4tLkZ5r7dq1qFy5slyRT8oJggAvLy+MGjUKtra2JZ1OhVSSffbdu3fo3LkzGjRogEqVKuHp06dYvHgxmjVrhhs3bqB27doAgFq1amHgwIGYMmUKzp07p/I8iajsYtFNRKVavXr14OrqKnvcqVMnVKpUCbt27SrVRXfz5s1LOoVSQSKRIDMzE1paWiWdSolr2LBhSadAShw/fhw3b97Ezp07SzoVKgFz5syRe+zu7o7mzZvDyckJ/v7+mDt3rmzbhAkT4OrqisuXL6Nly5aqTpWIyijeXk5EZYq2tjY0NTWhoaGRb2xkZCTGjBmDatWqQVNTE/b29pgzZw4yMzNlMTlvlV2xYgXs7e2hr6+PFi1a4OrVq7mOuXXrVtSuXRtaWlqoU6cOfvvtN4Xn/vC21uzbbM+ePYuxY8eicuXKMDU1RZ8+fRAeHi63b1paGqZOnQoLCwvo6urCzc0NN27cyHV7siKFfT6BgYHo0aMHTExMoK2tjYYNG+L333+Xi3nz5g3GjRsHJycn6Ovrw9zcHG3btsWFCxcUnnvp0qWYP38+7O3toaWlhbNnzyrNNzY2FiNGjICJiQn09fXRtWtXPH36NNfr9/jxYwwbNgw1a9aErq4uqlatiu7du+PevXtyx8u+FXXHjh3w9vaGhYUFdHR04O7ujlu3bsnFPn36FAMGDICVlRW0tLRQpUoVtGvXTuHt3tmOHDkCkUiE69evy9r27dsHkUiErl27ysU6Ozvjf//7n+xxzvcvICAATZo0AQAMGzZMNoTiw1uhHz9+jC5dukBfXx/W1taYOnUq0tLSlOaXfZ4HDx7g3LlzsuNmD3+QSqWYP38+ateuDR0dHRgbG8PZ2Rl+fn55HlMRqVSKBQsWwMbGBtra2nB1dcWZM2cKtO/p06fRrl07GBoaQldXF61atcq1r4+PD0QiER48eIAvvvgCRkZGqFKlCoYPH464uDi52Pj4eIwaNQqmpqbQ19dHp06dEBISUuDnsm7dOjRp0kR2RfNDBw4cgLOzM7S1teHg4IBVq1YV6LiPHj3Cl19+CXNzc9nvjJ9//lkuJrvP7tq1Cz/88AOsrKxgaGiI9u3b4+HDh3KxgiBg6dKlsLW1hba2Nho1aoRjx44V+HnmJz09HfPnz4ejoyO0tLRgZmaGYcOG4c2bN3Jx2bfdHz9+HI0aNYKOjg4cHR2xefPmXMe8ePEiWrRoAW1tbVStWhUzZ87Exo0b5YYd5NVns2VkZOT7+hQlMzMzAIC6uvz1qcaNG6NOnTpYv359sZ2biMofXukmolIt+0qpIAh4/fo1li1bhqSkJHz55Zd57hcZGYmmTZtCLBZj1qxZqF69Oq5cuYL58+cjLCwMW7ZskYv/+eef4ejoCF9fXwDAzJkz0aVLF4SGhsLIyAhAVuE8bNgw9OzZE8uXL0dcXBx8fHyQlpYGsbhg32GOHDkSXbt2xc6dO/HixQtMnz4dgwYNwt9//y2LGTZsGPbs2YNvvvkGbdu2RVBQEHr37o34+PgCv24FeT5nz55Fp06d0KxZM6xfvx5GRkbYvXs3+vfvj+TkZFmBGB0dDQCYPXs2LCwskJiYiAMHDsDDwwNnzpzJNS501apVqFWrFn766ScYGhqiZs2aCnOUSqXo3r07AgMD4ePjg0aNGuHKlSvo1KlTrtjw8HCYmppi8eLFMDMzQ3R0NLZt24ZmzZrh1q1buYql77//Ho0aNcLGjRtl75OHhwdu3boFBwcHAECXLl0gkUiwdOlS2NjY4O3bt7h8+TJiY2OVvq7u7u7Q0NDA6dOnZUXz6dOnoaOjg3PnziEjIwMaGhqIiorC/fv3MXbsWIXHadSoEbZs2YJhw4bhxx9/lBXsOYckZGRkoEePHhgxYgSmTp2K8+fPY968eTAyMsKsWbOU5njgwAF8/vnnMDIywtq1awFAdqfB0qVL4ePjgx9//BFubm7IyMjAv//+m+dzVmbNmjWwtbWFr68vpFIpli5dis6dO+PcuXNo0aKF0v127NiBwYMHo2fPnti2bRs0NDTwyy+/oGPHjjhx4gTatWsnF/+///0P/fv3x4gRI3Dv3j189913ACAr8ARBQK9evXD58mXMmjULTZo0waVLl9C5c+cCPY/09HScPn0aEydOVLj99u3b8PLygo+PDywsLODv74/JkycjPT0d06ZNU3rcoKAgtGzZEjY2Nli+fDksLCxw4sQJTJo0CW/fvsXs2bPl4r///nu0atUKGzduRHx8PGbMmIHu3bsjODgYampqALKuyM6ZMwcjRozA559/jhcvXmDUqFGQSCRKvzAoKKlUip49e+LChQv45ptv0LJlSzx79gyzZ8+Gh4cHAgMDoaOjI4u/c+cOpk6dim+//RZVqlTBxo0bMWLECNSoUQNubm4AgLt37+Kzzz5DrVq1sG3bNujq6mL9+vXYsWOH3Lnz6rOFeX2kUimkUmm+z1UkEsn2ySn735vQ0FB8++23MDc3x7Bhw3LFeXh4YO/evRAEASKRKN/zERFBICIqhbZs2SIAyPWjpaUlrF27Nlc8AGH27Nmyx2PGjBH09fWFZ8+eycX99NNPAgDhwYMHgiAIQmhoqABAqF+/vpCZmSmLu3btmgBA2LVrlyAIgiCRSAQrKyuhUaNGglQqlcWFhYUJGhoagq2tbZ75ZD+fcePGycUtXbpUACBEREQIgiAIDx48EAAIM2bMkIvbtWuXAEAYMmRInq9bQZ+PIAiCo6Oj0LBhQyEjI0PuGN26dRMsLS0FiUSi8ByZmZlCRkaG0K5dO6F37965zl29enUhPT09zzwFQRCOHDkiABDWrVsn175o0aJcr5+iHNLT04WaNWsKU6ZMkbWfPXtWAKD0fRo5cqQgCILw9u1bAYDg6+ubb54fat26tdC2bVvZ4xo1agjTp08XxGKxcO7cOUEQBMHf318AIISEhMjibG1t5d6/69evCwCELVu25DrHkCFDBADC77//LtfepUsXoXbt2vnmWLduXcHd3T1Xe7du3QQXF5d8989L9vtsZWUlpKSkyNrj4+MFExMToX379rK27H4fGhoqCIIgJCUlCSYmJkL37t3ljimRSIQGDRoITZs2lbXNnj1bACAsXbpULnbcuHGCtra27P09duyYAEDw8/OTi1uwYEG+/UgQBOGff/4RAAi7d+/Otc3W1lYQiUTC7du35do/++wzwdDQUEhKSpJ7TXK+lx07dhSqVasmxMXFye07YcIEQVtbW4iOjhYE4X2f7dKli1zc77//LgAQrly5IgiCIMTExAja2tpynzlBEIRLly4JABS+33lxd3eX2yf7d8y+ffvk4rL7ac7fu7a2toK2trbc79eUlBTBxMREGDNmjKytb9++gp6envDmzRtZm0QiEZycnOT6hSAo77MFfX0E4X2fye/nw9/X2bS0tGQxtWrVEoKCghTG/frrrwIAITg4WOF2IqIP8fZyIirVfvvtN1y/fh3Xr1/HsWPHMGTIEIwfPx5r1qzJc7/Dhw/D09MTVlZWyMzMlP1kX/36cBKcrl27yl35cHZ2BgDZTMYPHz5EeHg4vvzyS7krG7a2toUa19ejRw+5xx+eJzuvfv36ycV9/vnnuW5zzEt+z+fx48f4999/MXDgQACQe426dOmCiIgIuVs3169fj0aNGkFbWxvq6urQ0NDAmTNnEBwcrPA5FuT2f2XP9YsvvsgVm5mZiYULF8LJyQmamppQV1eHpqYmHj16pDAHZe9T9q3uJiYmqF69OpYtW4YVK1bg1q1bBbpCBgDt2rXDpUuXkJKSgmfPnuHx48cYMGAAXFxccOrUKQBZV79tbGyUXuUvCJFIlGveAmdnZ7nZtQuradOmuHPnDsaNG4cTJ04U6u6JD/Xp0wfa2tqyxwYGBujevTvOnz8PiUSicJ/Lly8jOjoaQ4YMketzUqkUnTp1wvXr15GUlCS3j6LPTGpqKqKiogBA9p5m9+Vs+d0Nky17eIe5ubnC7XXr1kWDBg1yHTs+Pl7pLNapqak4c+YMevfuDV1d3Vyfr9TU1FzDPfL73XDlyhWkpqbmep4tW7YsksnfDh8+DGNjY3Tv3l0uXxcXF1hYWCAgIEAu3sXFBTY2NrLH2traqFWrllz/PHfuHNq2bYvKlSvL2sRica7PfEHk9/oAwOjRo2X/XuT1c+jQIYXnuHz5Mq5cuYIdO3bAwMAAnp6euWYwB973lVevXhX6eRBRxcTby4moVKtTp06uidSePXuGb775BoMGDYKxsbHC/V6/fo1Dhw4pLf7evn0r99jU1FTucfatjSkpKQCyZrcFAAsLi1zHsrCwKPCSSAU9T5UqVeTi1NXVc+37Ked5/fo1AGDatGlKb5HNfo1WrFiBqVOn4uuvv8a8efNQuXJlqKmpYebMmQoLXktLywLl+O7dO6irq8PExESu/cPnDgDe3t74+eefMWPGDLi7u6NSpUoQi8UYOXKk7DnlpOx9unPnDoCsgvbMmTOYO3culi5diqlTp8LExAQDBw7EggULYGBgoDTv9u3bY86cObh48SKePXuGypUro2HDhmjfvj1Onz6NefPm4cyZM2jfvn2BXgdldHV15YpaIOt9TE1N/ehjfvfdd9DT08OOHTuwfv16qKmpwc3NDUuWLJH7nBWEstc4PT0diYmJsmEMOWX3u88//1zpcaOjo6Gnpyd7XJDPjKLPh6L8FMk+zoevdV7HyW7L/rx+6N27d8jMzMTq1auxevVqhTFF/TvoU71+/RqxsbHQ1NT8qHyBrJxzfh7fvXun8POsqC0/+b0+QNbroOzLk5yU3RLeqFEjAFkTYfbo0QM1atTA999/j7/++ksuLruvKPrdQ0SkCItuIipznJ2dceLECYSEhKBp06YKYypXrgxnZ2csWLBA4XYrK6tCnTP7D77IyMhc2xS1fazs87x+/RpVq1aVtWdmZir9A/9jZF95+u6779CnTx+FMdljRHfs2AEPDw+sW7dObntCQoLC/Qo6xtHU1BSZmZmIjo6WK7wVvZ7Z44AXLlwo1/727VuFX7woe59y/uFua2uLTZs2Achaf/f333+Hj48P0tPT85wkqVmzZtDX18fp06cRFhaGdu3aQSQSoV27dli+fDmuX7+O58+ff3LRXRzU1dXh7e0Nb29vxMbG4vTp0/j+++/RsWNHvHjxArq6ugU+lrLXWFNTU+ka49n9bvXq1Upn+C9sQZbdj969eyf3/hb0c5mdU/bcBR/K6zOv7IuwSpUqQU1NDV999RXGjx+vMMbe3r5A+WXL73fQhxOPFVb25I7Hjx9XuD2vL6KUMTU1lX3RklNR/s7Mae7cublmIlfE1tY23y9KDQwM4OjoqHBCvuy+kvMKPhFRXlh0E1GZkz27dPbssop069YNR48eRfXq1VGpUqVPPmft2rVhaWmJXbt2wdvbW1ZYPnv2DJcvXy50Ea9M9gREe/bskV11AYA//vhDbtb1T1W7dm3UrFkTd+7cyVXIfkgkEuWa1Oju3bu4cuUKrK2tPzoHd3d3LF26FHv27JGbcGz37t0FyuHIkSN49eoVatSokSte2fs0ePBghbnUqlULP/74I/bt26f0luFsGhoacHNzw6lTp/DixQssXrwYANCmTRuoq6vjxx9/lBXheVF0pa6ofHjFURFjY2N8/vnnePXqFby8vBAWFgYnJ6cCn2P//v1YtmyZ7KpfQkICDh06hDZt2iicpAoAWrVqBWNjYwQFBWHChAkFf0J58PT0xNKlS+Hv749JkybJ2gu6/FedOnUAAE+ePFG4/cGDB7hz547cLeY7d+6EgYGB3Gc0J11dXXh6euLWrVtwdnZWevW4MJo3bw5tbW34+/vLzYp/+fJlPHv27JOL7m7dumH37t2QSCRo1qzZJ2abxd3dHUePHsXbt29lBapUKsXevXtzxRakz+Zn9OjR6NatW75xBVnC8O3bt7h37x5atWqVa9vTp08hFos/efI6Iqo4WHQTUal2//59WbH57t077N+/H6dOnULv3r3zvFI0d+5cnDp1Ci1btsSkSZNQu3ZtpKamIiwsDEePHsX69evlZorOj1gsxrx58zBy5Ej07t0bo0aNQmxsrGxG46JSt25dfPHFF1i+fDnU1NTQtm1bPHjwAMuXL4eRkVGBZ0kviF9++QWdO3dGx44dMXToUFStWhXR0dEIDg7GzZs3ZX8Yd+vWDfPmzcPs2bPh7u6Ohw8fYu7cubC3t/+kLwI6deqEVq1aYerUqYiPj0fjxo1x5coV2TJsOZ9rt27dsHXrVjg6OsLZ2Rk3btzAsmXLlL6HUVFRsvcpLi4Os2fPhra2tmzm67t372LChAno27cvatasCU1NTfz999+4e/cuvv3223xzb9euHaZOnQoAsivaOjo6aNmyJU6ePAlnZ+d8b3OtXr06dHR04O/vjzp16kBfXx9WVlZF8gVO/fr1sXv3buzZswcODg7Q1tZG/fr10b17d9SrVw+urq4wMzPDs2fP4OvrC1tb20KPP1dTU8Nnn30Gb29vSKVSLFmyBPHx8XleadTX18fq1asxZMgQREdH4/PPP4e5uTnevHmDO3fu4M2bN7nuqMhPhw4d4Obmhm+++QZJSUlwdXXFpUuXsH379gLtX61aNTg4OODq1atyRXs2Kysr9OjRAz4+PrC0tMSOHTtw6tQpLFmyJM87A/z8/NC6dWu0adMGY8eOhZ2dHRISEvD48WMcOnRIbsWCgqhUqRKmTZuG+fPnY+TIkejbty9evHhRZL+DBgwYAH9/f3Tp0gWTJ09G06ZNoaGhgZcvX+Ls2bPo2bMnevfuXahj/vDDDzh06BDatWuHH374ATo6Oli/fr1s3H7Oz7iyPlsYH/P5iYuLw2effYYvv/wSNWvWhI6ODkJCQuDn54e0tLRcs8wDwNWrV+Hi4lIkX+gSUcXAopuISrWcy7UYGRnB3t4eK1aswLhx4/Lcz9LSEoGBgZg3bx6WLVuGly9fwsDAAPb29ujUqdNH/bE0YsQIAMCSJUvQp08f2NnZ4fvvv8e5c+dyTTL0KbZs2QJLS0ts2rQJK1euhIuLC37//Xd06tRJ6Rj2j+Hp6Ylr165hwYIF8PLyQkxMDExNTeHk5CQ30dEPP/yA5ORkbNq0CUuXLoWTkxPWr1+PAwcOfNLzFovFOHToEKZOnYrFixcjPT0drVq1wo4dO9C8eXO55+rn5wcNDQ0sWrQIiYmJaNSoEfbv348ff/xR4bEXLlyI69evY9iwYYiPj0fTpk2xe/duVK9eHUDW2M/q1atj7dq1ePHiBUQiERwcHLB8+XKlS0fllF1o16xZU24Sq/bt2+Ps2bMFurVcV1cXmzdvxpw5c9ChQwdkZGRg9uzZudbq/hhz5sxBREQERo0ahYSEBNnttJ6enti3b59s2SULCwt89tlnmDlzZoEmv8tpwoQJSE1NxaRJkxAVFYW6deviyJEjCq8M5jRo0CDY2Nhg6dKlGDNmDBISEmBubg4XF5d816FXRCwW4+DBg/D29sbSpUtl/ejo0aNwdHQs0DEGDhyINWvWIC0tLddVUBcXFwwbNgyzZ8/Go0ePYGVlhRUrVmDKlCl5HtPJyQk3b97EvHnz8OOPPyIqKgrGxsaoWbMmunTpUujnCWR9mainp4e1a9di+/btcHR0xPr16/HTTz991PFyUlNTw8GDB+Hn54ft27dj0aJFUFdXR7Vq1eDu7l7oAhgAGjRogFOnTmHatGkYPHgwKlWqhK+++gru7u6YMWOG3Lh/ZX22uGlra6NBgwbYsGEDXrx4gdTUVFhYWMDDwwP79u3LdfdHYmIizpw5g3nz5hV7bkRUfogEQRBKOgkiIsrb5cuX0apVK/j7+xd4VuayaufOnRg4cCAuXbpUqJnhASAgIACenp7Yu3dvnpN1EeUUHh4Oe3t7/Pbbb+jfv39Jp1PudejQAWFhYQrHS5d2mzZtwuTJk/HixQte6SaiAuOVbiKiUubUqVO4cuUKGjduDB0dHdy5cweLFy9GzZo1lU56Vlbt2rULr169Qv369SEWi3H16lUsW7YMbm5uhS64iT6WlZUVvLy8sGDBAvTt27dIh3FUdN7e3mjYsCGsra0RHR0Nf39/nDp1SjaJYVmSmZmJJUuW4LvvvmPBTUSFwqKbiKiUMTQ0xMmTJ+Hr64uEhARUrlwZnTt3xqJFi5Qua1RWGRgYYPfu3Zg/fz6SkpJgaWmJoUOHYv78+SWdWoWU3xh9sVhcbgvSH3/8Ebq6unj16tUnTRBY0iQSCfK6iVEkEimd6K648pk1axYiIyMhEong5OSE7du3Y9CgQSrLoai8ePECgwYNks3nQERUULy9nIiIiBAWFpbvMlZFNeacio+dnR2ePXumdLu7u3uRzkFBRET545VuIiIigpWVFa5fv55vDJVuhw4dQlpamtLtH7PeNhERfRpe6SYiIiIiIiIqJqXuSrdUKkV4eDgMDAwgEolKOh0iIiIiIiKiXARBQEJCAqysrPKc86TUFd3h4eFlegITIiIiIiIiqjhevHiBatWqKd1e6oru7LFGL168gKGhYQlnkzepVIo3b97AzMys3M7mSqUH+xupEvsbqRL7G6kK+xqpEvtb+RcfHw9ra+t858sodUV39i3lhoaGZaLoTk1NhaGhIT9IVOzY30iV2N9IldjfSFXY10iV2N8qjvyGRfPdJyIiIiIiIiomLLqJiIiIiIiIigmLbiIiIiIiIqJiUurGdBeURCJBRkZGieYglUqRkZGB1NRUjtOgYqfq/qapqcl+TURERET0icpc0S0IAiIjIxEbG1vSqUAQBEilUiQkJHBNcSp2qu5vYrEY9vb20NTULPZzERERERGVV2Wu6M4uuM3NzaGrq1uixa4gCMjMzIS6ujqLbip2quxvUqkU4eHhiIiIgI2NDfs3EREREdFHKlNFt0QikRXcpqamJZ0Oi25SKVX3NzMzM4SHhyMzMxMaGhrFfj4iIiIiovKoTA3YzB7DraurW8KZEJV/2beVSySSEs6EiIiIiKjsKlNFdzZeVSYqfvycERERERF9ujJZdBMRERERERGVBSy6iYiIiIiIiIpJhS26JVIBV568w1+3X+HKk3eQSIWSTgkAsHXrVhgbGxdqn6FDh6JXr17Fko8idnZ28PX1/eTjeHh4wMvL65OPo8i7d+9gbm6OsLAwAEBAQABEIlGeS835+PjAxcVF9njatGmYNGlSseRHREREREQVQ5mavbyoHL8fgTmHghARlyprszTSxuzuTuhUz7JYzjl06FDExsbizz//lGsPCAiAp6cnYmJiYGxsjP79+6NLly7FkkNRuX79OvT09D75OPv375ebFdvOzg5eXl5FUogvWrQI3bt3h52dXYH3mTZtGiZOnCh7/M0336B69eqYMmUK7O3tPzknIiIiIiKqeCrcle7j9yMwdsdNuYIbACLjUjF2x00cvx9RQpll0dHRgbm5eYnmoEx6ejqArKWkPmUG+exZ6E1MTGBgYFAkueWUkpKCTZs2YeTIkYXaT19fX24pOnNzc3To0AHr168v6hSJiIiIiKiCqFBFt0QqYM6hICi6kTy7bc6hoBK91VzR7eXz58+Hubk5DAwMMHLkSHz77bdyt0Fn++mnn2BpaQlTU1OMHz9eVtwqkn0r9S+//AJra2vo6uqib9++crdfZ9+2vmjRIlhZWaFWrVoAct9e/vz5c/Ts2RP6+vowNDREv3798Pr161zn2rx5MxwcHKClpQVBEORuL/fw8MCzZ88wZcoUiEQiiEQiJCUlwdDQEH/88Ydc7ocOHYKenh4SEhIUPrdjx45BXV0dLVq0yLXtxo0bcHV1ha6uLlq2bImHDx/myjOnHj16YNeuXUpfRyIiIiIioryUi9vLu6++iDcJafnGpWVKEJOsvBAVAETEpcJ1/iloqavlezwzA03s/7p5YVItNH9/fyxYsABr165Fq1atsHv3bixfvjzX7c5nz56FpaUlzp49i8ePH6N///5wcXHBqFGjlB778ePH+P3333Ho0CHEx8djxIgRGD9+PPz9/WUxZ86cgaGhIU6dOgVByP1lhCAI6NWrF/T09HDu3DlkZmZi3Lhx6N+/PwICAnKda9++fVBTy/3a7t+/Hw0aNMDo0aNlOevp6WHAgAHYsmULPv/8c1ls9mNlV8nPnz8PV1dXhdt++OEHLF++HGZmZvj6668xfPhwXLp0Selr1LRpU7x48QLPnj2Dra2t0jgiIiIiIiJFykXR/SYhDZHxqfkHFlBWYa68OP9Yhw8fhr6+vlybRCLJc5/Vq1djxIgRGDZsGABg1qxZOHnyJBITE+XiKlWqhDVr1kBNTQ2Ojo7o2rUrzpw5k2fRnZqaim3btqFatWqyc3Xt2hXLly+HhYUFgKzCd+PGjdDU1FR4jNOnT+Pu3bsIDQ2FtbU1AGD79u2oW7curl+/jiZNmgDIujV9+/btMDMzU3gcExMTqKmpwcDAQHZuABg5ciRatmyJ8PBwWFlZ4e3btzh8+DBOnTql9HmFhYXByspK4bYFCxbA3d0dAPDtt9+ia9euSE1Nhba2tsL4qlWryo7JopuIiIiIqPikZ2Zi550API+PhI2hBb5s4AFN9bJfspb9ZwDAzECrQHH5XenOVklXo8BXugvD09MT69atk2v7559/MGjQIKX7PHz4EOPGjZNra9q0Kf7++2+5trp168pdQba0tMS9e/fyzMfGxkZWcANAixYtIJVK8fDhQ1nhW79+faUFNwAEBwfD2tpaVnADgJOTE4yNjREcHCwrum1tbZUW3Hlp2rQp6tati99++w3ffvsttm/fDhsbG7i5uSndJyUlRWkR7ezsLPt/S8usSfOioqJgY2OjMF5HRwcAkJycXOjciYiIiIioYJZd2Ivtj1ZBUIuVta24Y4yvak7C9DZ9Sy6xIlDoovv8+fNYtmwZbty4gYiICBw4cEC2XFVGRgZ+/PFHHD16FE+fPoWRkRHat2+PxYsXK73yWBQOTWxdoDiJVEDrJX8jMi5V4bhuEQALI21cnNEWamJRvscTBAGZmZkFzlNPTw81atSQa3v58mW++4lE8rkous075yzg2ftIpdIC55bzPDnPl98s5YIg5MpPUfunzHY+cuRIrFmzBt9++y22bNmCYcOGKTxntsqVKyMmJkbhtpyvU/Yx8nqdoqOjAeCjvjAgIiIiIqL8LbuwF9uezAXEWTVZNqk4NqsdKNOFd6EnUktKSkKDBg2wZs2aXNuSk5Nx8+ZNzJw5Ezdv3sT+/fsREhKCHj16FEmyn0pNLMLs7k4A5N/MnI9nd3cqUMGtKrVr18a1a9fk2gIDA4vk2M+fP0d4eLjs8ZUrVyAWi2UTphWEk5MTnj9/jhcvXsjagoKCEBcXhzp16hQqH01NTYW32w8aNAjPnz/HqlWr8ODBAwwZMiTP4zRs2BBBQUGFOrcy9+/fh4aGBurWrVskxyMiIiIiovfSMzOx/dEqAMCH19WyH28PWYX0QlzsLG0KfaW7c+fO6Ny5s8JtRkZGucbarl69Gk2bNsXz588V3sKblpaGtLT3k6DFx8cDyLr6+OEVSKlUCkEQZD8fo2NdC6wd2AhzDgchMseyYRZG2pjVzQkd61oU6tjZsQXd58O4nPvnfF7Z/50wYQJGjx6Nxo0bo2XLltizZw/u3r0LBwcHpccqSF6CIEBbWxtDhgzBsmXLEB8fj0mTJqFfv36oUqWKwmN9uL8gCGjXrh2cnZ0xcOBArFy5EpmZmRg/fjzc3d3RuHFjhc9J0XGArFnRz58/j/79+0NLSwuVK1cGABgbG6NPnz6YPn06OnTogKpVq+b5enfo0AHfffcdoqOjUalSJYWvc0FeeyDrzo42bdpAW1v7o/tcUSpsf/vUcwmCoPCzSOVf9u9bvvekCuxvpCrsa6RK7G8F43/nLAS12FwXRbOJRICgHgv/O2cxpGE7leaWn4K+t8U+pjsuLg4ikSjXMljZFi1ahDlz5uRqf/PmDVJT5SdHy8jIgFQqRWZmZqFu6/5Qe8fK8KzVBoHPYhCVkAZzAy242laCmlhUqOMKgiC7MpvX7c7A+y8RPjx+9v7Zzyn7jcuO69+/Px4/fozp06cjNTUVn3/+OQYPHozr16/LYhQdO7tgUvZ8pFIpqlevjp49e6Jr166Ijo5Gp06d4Ofnl+dxc+6f3b537154eXnB3d0dYrEYHTp0gK+vr9xxFOXyYY6zZs3CuHHjUKNGDaSlpcnWBQeAIUOGYOfOnRg8eHC+71GdOnXQuHFj7N69WzaR3Ievc87XOOdr/2Geu3btwqxZsz6pvxWVwvS3opD9mrx79y7X8AUq/6RSKeLi4iAIAsTiCrW6JJUA9jdSFfY1UiX2t/xFJEdgd8gvBYoNiQxDVFRUMWdUOMqWMP6QSPiES2YikUhuTPeHUlNT0bp1azg6OmLHjh0KYxRd6ba2tkZMTAwMDQ1zHS8sLAz29vZKJ8pStYyMDJUXJB06dICFhQV+++23jz6Gj48P/vrrL9y6dasIMys+/v7+8PLywqtXr/Kc2C3b0aNHMX36dNy7d++jf8kdOXIE33zzDe7cuQP1UjJroir7W2pqKkJDQ2FnZ1dqPm+kOlKpFG/evIGZmRn/UKBix/5GqsK+RqrE/qbcu5R3+PXer/g9ZC8kQsEubnnXW1HqrnTHx8ejUqVKiIuLy1W75lRslURGRgYGDBgAqVSKtWvXKo3T0tKCllbu2cfFYnGuzikWiyESiWQ/JS3nZGHFlU9ycjLWr1+Pjh07Qk1NDbt27cLp06dx6tSpTzpnceddVJKTkxEaGorFixdjzJgxCvuKIl27dsXjx48RHh4uN7N6Yc+9ZcuWUnOVVxX9Lafsz5mizyJVDHz/SZXY30hV2NdIldjf5CWmJ2Jb0DZsubcVadKCLfksCIBYYoyBDTxL3etY0HyKpejOyMhAv379EBoair///jvPqp/yJhKJcPToUcyfPx9paWmoXbs29u3bh/bt25d0aiqxdOlSLFiwAG5ubvjuu+8Kte/kyZM/6dz9+vX7pP2JiIiIiAhIl6Rjz8M9WHd7AxIyYhXGZN9/nfPaUnbbV7Umlen1uos88+yC+9GjRzh79ixMTU2L+hQVio6ODk6fPl3kx/Xx8YGPj0+RH7eolZU8iYiIiIhInkQqwZHQI/C7sRpRKZEKY9REGvjScQDSkqtg79ONcut0iyXG+KpWBVynOzExEY8fP5Y9Dg0Nxe3bt2FiYgIrKyt8/vnnuHnzJg4fPgyJRILIyKwX18TEpEBjcYmIiIiIiKjsEgQB516ew4pAX4TGP1EYI4IY3at3xwSX8bDUtwQAzGg9EDvvBOB5fCRsDC3wZQOPMn2FO1uhn0FgYCA8PT1lj729vQFkzS7t4+ODgwcPAgBcXFzk9jt79iw8PDw+PlMiIiIiIiIq1W6+vonlgStx9+1tpTHu1Tzg1WgyalSqIdeuqa6OoY3L3zDaQhfdHh4eea4RXBrWMiYiIiIiIiLVCYkJwcpAP1wMP680poFZQ0xz9YaLuYvqEisFyv61eiIiIiIiIioRrxJfYfXNNTgSegSA4guwDkY1MdXVC22qtin1qycVBxbdREREREREVCjRqdH45c4v2PPwd6VrbVvoWmFy44noYt8FYlHpWu5LlVh0ExERERERUYEkZSThtwe/YdP9LUiTpCiMMdQwxriGX6NfrX7QUNNQcYalT8X9ukEqAUIvAPf+yPqvVFLSGZVKW7duhbGx8ScfJyAgACKRCLGxsZ98LEVmzpyJ0aNHyx57eHjAy8urwPsfPnwYDRs2hFQqLYbsiIiIiIjKtnRJOvyD/dFhbyesvbNWYcGtpaaDcS7jcLLvcQysM5AF938qZtEddBDwrQds6wbsG5H1X996We3FZOjQoejVq1exHb+49O/fHyEhIZ98nJYtWyIiIgJGRkYAiq6YB4DXr1/Dz88P33///Ucfo1u3bhCJRNi5c2eR5EREREREVB5IpBIcenIIXfZ1w+JrixGfEZsrRk2kgUF1BuHk58cxtsFY6GnoqT7RUqzi3V4edBD4fTByDfKPj8hq7/cb4NSjRFIrbTIyMqCjowMdHZ1PPo6mpiYsLCyKKDN5mzZtQosWLWBnZ/dJxxk2bBhWr16NQYMGFU1iRERERERllCAIuPDqApZfX4mn8Y+VRInQ3aE7xjcch6r6VVWaX1lSsa50SyXA8RlQPKvef23Hvy2RW83PnTuHpk2bQktLC5aWlvj222+RmZk1IcGhQ4dgbGwsu/X59u3bEIlEmD59umz/MWPG4IsvvlB6fJFIhHXr1qFz587Q0dGBvb099u7dK9seFhYGkUiE33//HR4eHtDW1saOHTsUXpFet24dqlevDk1NTdSuXRvbt2/Pda7169ejZ8+e0NPTw/z58+VuLw8ICMCwYcMQFxcHkUgEkUgEHx8fzJ07F/Xr18+Ve+PGjTFr1iylz2337t3o0SPvL0piYmIwePBgVKpUCbq6uujcuTMePXokF9OjRw9cu3YNT58+zfNYRERERETl2e2o2/jq6GCMPzNeacHdpqo79vfYh4VtFrDgzkf5udJ9eQ1w5ee8YzLTgJR3eQQIQPwrYFlNQF0r9+YW44GWEz4pTUVevXqFLl26YOjQofjtt9/w77//YtSoUdDW1oaPjw/c3NyQkJCAW7duoXHjxjh37hwqV66Mc+fOyY4REBCAKVOm5HmemTNnYvHixfDz88P27dvxxRdfoF69eqhTp44sZsaMGVi+fDm2bNkCLS0tnDx5Uu4YBw4cwOTJk+Hr64v27dvj8OHDGDZsGKpVqwZPT09Z3OzZs7Fo0SKsXLkSampqCA0NlW1r2bIlfH19MWvWLDx8+BAAoK+vj9jYWMyZMwfXr19HkyZNAAB3797FrVu35L4gyCkmJgb379+Hq6trns996NChePToEQ4ePAhDQ0PMmDEDXbp0QVBQEDQ0ssaa2NrawtzcHBcuXICDg0OexyMiIiIiKm8exTyC741VOP8qQGlMg8oumNrEGw3NG6ousTKu/BTdaQlAQnjRHEtZYZ6WUDTH/8DatWthbW2NNWvWQCQSwdHREeHh4ZgxYwZmzZoFIyMjuLi4ICAgAI0bN5YV2HPmzEFCQgKSkpIQEhICDw+PPM/Tt29fjBw5EgAwb948nDp1CqtXr8batWtlMV5eXujTp4/SY/z0008YOnQoxo0bBwDw9vbG1atX8dNPP8kV3V9++SWGDx8ue5yz6NbU1ISRkRFEIpHcLef6+vro2LEjtmzZIiu6t2zZAnd3d6VF8LNnzyAIAqysrJTmnF1sX7p0CS1btgQA+Pv7w9raGn/++Sf69u0ri61atSrCwsKUHouIiIiIqLwJTwzHmls/49DTQ1C21ra9YXVMdZ0Ct2puxbfWtlQCPLsMJL4G9KsAti0BsVrxnEuFyk/RrWUAGCgvvAAU4Er3f3RMFV/p1jL4uNzyERwcjBYtWsh13latWiExMREvX76EjY0NPDw8EBAQAG9vb1y4cAHz58/Hvn37cPHiRcTGxqJKlSpwdHTM8zwtWrTI9fj27dtybfldMQ4ODpabJTw7Vz8/v0IdR5lRo0Zh+PDhWLFiBdTU1ODv74/ly5crjU9JyZo1UVtbO8+c1dXV0axZM1mbqakpateujeDgYLlYHR0dJCcnf1TuRERERERlSUxqDDbc3YBd/+6BRMhQGGOuYwmv/9baVivOAjjoYNZQ4PgcF1INrYBOS8r8nFvlp+huOSH/W7+lkqxZyuMjoPgbHFHWG+t1T6XfqAiCkOvbIkHIyi+73cPDA5s2bcKdO3cgFovh5OQEd3d3nDt3DjExMXB3d/+oc394Xj29/GcaVJTrxxxHke7du0NLSwsHDhyAlpYW0tLS8L///U9pfOXKlQFk3WZuZmamMCb7tVTU/mHe0dHRSo9DRERERFQeJGckY1vQNmy+txWpEsUXnLLX2u5bqy801TSLN6FyPtl1xZpITayW9U0JAODDWyL+e9xpscpvYXBycsLly5flisPLly/DwMAAVatmTUqQPa7b19cX7u7uEIlEcHd3R0BAAAICAgpUdF+9ejXX4/yujn+oTp06uHjxolzb5cuX5caFF4SmpiYkktwT1qmrq2PIkCHYsmULtmzZggEDBkBXV1fpcapXrw5DQ0MEBQUpjXFyckJmZib++ecfWdu7d+8QEhIil3dqaiqePHmChg05PoWIiIiIyp8MSQZ2Bu9Ehz86Ye3ttQoLbi01HYxtMFa21naxF9yleLLrolJ+rnQXlFOPrG9KFN66sLhYv0GJi4vLdTu3iYkJxo0bB19fX0ycOBETJkzAw4cPMXv2bHh7e0MszvpeJHtc944dO2S3cru5uaFv377IyMjIdzw3AOzduxeurq5o3bo1/P39ce3aNWzatKlQz2H69Ono168fGjVqhHbt2uHQoUPYv38/Tp8+Xajj2NnZITExEWfOnEGDBg2gq6srK65HjhwpK4YvXbqU53HEYjHat2+PixcvKl0HvWbNmujZsydGjRqFX375BQYGBvj2229RtWpV9OzZUxZ39epVaGlp5boNn4iIiIioLJMKUhwNPQq/G6sRmax4Hiw1kTr61+6H0c6jYapjqrrknl2Wr8ty+W+y62eXAfs2KkurKFW8ohvIKqwdu6p8kH5AQECuq6hDhgzB1q1bcfToUUyfPh0NGjSAiYkJRowYgR9//FEu1tPTEzdv3pQV2JUqVYKTkxPCw8MLdKV5zpw52L17N8aNGwcLCwv4+/vDycmpUM+hV69e8PPzw7JlyzBp0iTY29tjy5YtBSr6c2rZsiW+/vpr9O/fH+/evcPs2bPh4+MDIKtIbtmyJd69eyc3DluZ0aNHY8SIEVi6dKnsS4oPbdmyBZMnT0a3bt2Qnp4ONzc3HD16VDZzOQDs2rULAwcOzPPKOhERERFRWSFbazvQF0/jHimJEqGbQ1dMaDihZJb+intZsLjE18WbRzESCcoGvJaQ+Ph4GBkZIS4uDoaGhnLbUlNTERoaCnt7+zwnzlIVQRCQmZkJdXX14pvBr4iIRCIcOHBA6dXg0kQQBDg6OmLMmDHw9vYuUHzz5s3h5eWV51rleXnz5g0cHR0RGBgIe3v7jzpGcVN1fyttnzdSLalUiqioKJibmyv9MouoqLC/kaqwr5EqlXR/ux11G8sDV+L2m5tKY1pbucGr8STUNqmtwsz+kxIDXPQFbm4v2GTXQw6XuivdedWuOVXMK91UakVFRWH79u149eoVhg0bVqB9RCIRNmzYgLt37370eUNDQ7F27dpSW3ATERERERXEk9gnWHnDF+deBiiNqW/aAFObTEHjKo1Vl1i29GTg2i/AxZVAalxWm6Y+kJ6EPCe7tm2pyiyLFItuKlWqVKmCypUrY8OGDahUqVKB92vQoAEaNGjw0edt2rQpmjZt+tH7ExERERGVpIjECKy5/TMOPTkEAVKFMXYGDpjaZArcq7mr/k5dSSZwaztwbgmQEPG+XU0TqN4WCD6ErMmtcxbeJTfZdVFi0V1BlLJRBEqVlTyJiIiIiEqDmNQYbLy3ETuDdyFTyVrbZjoWmNxoAro5dCvetbYVEQQg6C/g73nAu8fv20VioMEXgMe3gLFNHut0F+9k16rAopuIiIiIiKiMSc5Ixvag7dh0bwtSJEkKYww0jDHWZTT61+5f/Et/KfL2EbB/FBB+S769dheg3SzAPMdk0CU02bUqsOgmIiIiIiIqIzIkGfjj0R/4+dZ6xKVHK4zREmtjWP2hGOI0BPqa+irOMAc9MyA69P1jm5ZAex/ARskKRWK1UjdZWlFg0U1ERERERFTKSQUpjocex8obqxCZ/EphTPZa26OcR6GyTmUVZwggNR7QzjGLt44x0HoKcPd3oP1soGYHoJSv+lQcWHQTERERERGVUoIg4FL4JSy/vhKP40KURInQxa4zJjSaAGsDa5XmBwBIiAQCFgMP9gMTAgF98/fbmo8DWk4sF7eJfywW3URERERERKXQnTd3sPz6Stx6c0NpTCur1pjS2KuE1tqOBS75AVfXAZkpWW3nfwK6LH0fo14CY8lLGRbdREREREREpcjT2KfwvemHsy/+VhpTz9QZU12nwNXCVYWZ/ScjBbi2AbiwAkiNfd+uaQAYWKg+n1KuwhbdEqkEN6Nu4k3yG5jpmqGReSPVT5//gbCwMNjb2+PWrVtwcXEp1nOJRCIcOHAAvXr1+uhjDB06FLGxsfjzzz+LLC8iIiIioooqMikSP99ai7+e/KV0rW1bA3t4u3rB09qzZNbavrMz61by+BzjytU0gSYjgTZTAb0SGEteylXIovv0s9NYfG0xXie/lrVV0a2Cb5t+i/a27YvlnEOHDsW2bdtkj01MTNCkSRMsXboUzs7OxXLO8qC4v4goii8fiIiIiIg+RWxqLH6992uea21X1q6CyY0noLtD95K5WPjmIbBnEPA257hy0fu1tivZqj6nMqJMF91SQYrYtNhC7XP+5XnMvDQzV/vr5NeYEjAF81rNg1s1twIdSxAE6KsVfAr+Tp06YcuWLQCAyMhI/Pjjj+jWrRueP39e4GMQEREREVH5kJyRDP9gf/x6d5PStbb1NYwwtsFo9HfsDy01LRVnmINRNSA17v3j2l2AtjOBKk4ll1MZUaaL7ti0WLjvcS/SYyoqyPNyps8ZmGmYFShWS0sLFhZZYxwsLCwwY8YMuLm54c2bNzAzU3yMoKAgTJs2DefPn4eenh46dOiAlStXonLlrNs2PDw84OzsDG1tbWzcuBGampr4+uuv4ePjIzvGo0ePMGLECFy7dg0ODg7w8/PLdZ5Xr17B29sbJ0+ehFgsRuvWreHn5wc7OzsAgEQiwfTp07F582aoqalhxIgREAQh3+e8b98+zJo1C48fP4alpSUmTpyIqVOnyrYrutJsbGwMX19fDB06FPb29gCAhg0bAgDc3d0REBAgu7W9YcOG+Pnnn5GamoovvvgCq1evhqZm1mQNdnZ28PLygpeXl+zYLi4u6NWrF3x8fGTPrXfv3gAAW1tbhIWF5fuciIiIiIg+RYY0A/tD9mPNrXWITX+nMEZTrI2h9QZjaN2hMNA0UHGGABJeAwZVciSkB7h/A9z747+1tpurPqcySlzSCVRUiYmJ8Pf3R40aNWBqaqowJiIiAu7u7nBxcUFgYCCOHz+O169fo1+/fnJx27Ztg56eHv755x8sXboUc+fOxalTpwAAUqkUffr0gZqaGq5evYr169djxowZcvsnJyfD09MT+vr6OH/+PC5evAh9fX106tQJ6enpAIDly5dj8+bN2LRpEy5evIjo6GgcOHAgz+d448YN9OvXDwMGDMC9e/fg4+ODmTNnYuvWrQV+na5duwYAOH36NCIiIrB//37ZtjNnziA4OBhnz57Frl27cODAAcyZM6fAx75+/ToAYMuWLYiIiJA9JiIiIiIqDlJBimOhx9B1Xw/M/2e+woJbDDUMqD0AJz4/hokNJ6q+4H73BPhjOODnDMS+kN/WeDgw7BgL7kIq01e6y5rDhw9DXz/rdvSkpCRYWlri8OHDEIsVf/exbt06NGrUCAsXLpS1bd68GdbW1ggJCUGtWrUAAM7Ozpg9ezYAoGbNmlizZg3OnDmDzz77DKdPn0ZwcDDCwsJQrVo1AMDChQvRuXNn2TF3794NsViMjRs3yiZj2LJlC4yNjREQEIAOHTrA19cX3333Hf73v/8BANavX48TJ07k+XxXrFiBdu3aYebMrLsHatWqhaCgICxbtgxDhw4t0GuWfQeAqamp7C6BbJqamti8eTN0dXVRt25dzJ07F9OnT8e8efOUvqaKjm1sbJzr2EREREREHys9MxP+d84iJDIMtSzs8KWzBwKjrmF54Eo8in2odL/Odl0wseEEWBuWxFrbr4FzS4Cb2wBpZlZbwGKg18/vYwrwNzblxqJbhTw9PbFu3ToAQHR0NNauXYvOnTvj2rVrsLXNPfHAjRs3cPbsWVmhntOTJ0/kiu6cLC0tERUVBQAIDg6GjY2NrOAGgBYtWuQ6z+PHj2FgIP8tWmpqKp48eYK4uDhERETI7aeurg5XV9c8bzEPDg5Gz5495dpatWoFX19fSCQSqKl92gQQDRo0gK6uruxxixYtkJiYiBcvXih8PYmIiIiIituyC3ux/dEqCGqxWQ1vgRX31ACRROk+LSxbwdvVC44mjqpJMqfUOODSKuDqWiAj+X27bmXAsoHq8ymHynTRbaxljHP9zxU4XiKVoP/h/niT8kZpjLmOOXZ3212gGQELO5Ganp4eatSoIXvcuHFjGBkZ4ddff8X8+fNzxUulUnTv3h1LlizJtc3S0lL2/xoaGnLbRCIRpFKpLMcPfbi0gFQqRePGjeHv758rVtlY84IQBCHXuT7MRyQS5WrLyFA8Y2NBZZ9TLBYX+bGJiIiIiJRZdmEvtj2ZC4gBub+ClRTcTib1MK2JN5pYNFFJfnIyUoHrvwIXlgMpMe/bNfWBFhOAlhMArRIYS14OlemiWywSw0TbpFD7fN/se3gHeAMABLwvyET/fSy+a/YdzHQLVmgKgoDMzMxCnT8nkUgEsViMlJQUhdsbNWqEffv2wc7ODurqH/dWOTk54fnz5wgPD4eVlRUA4MqVK7nOs2fPHpibm8PQ0FDhcSwtLXH16lW4uWXN7J6ZmYkbN26gUaNGeZ774sWLcm2XL19GrVq1ZFe5zczMEBERIdv+6NEjJCe//4Yte1I0iST3L6o7d+4gJSUFOjo6AICrV69CX19fdlX/w2PHx8cjNDRU7hgaGhoKj01EREREVBjpmZnY/mhVVsGdz/LZNgb28HadjLbWbVW/1jYARP0L7Ogjv9a2WANoMgJoMw3Q//gLb5Rbhbspv71te6zwWAFzXXO59iq6VbDCY0WxrdMNAGlpaYiMjERkZCSCg4MxceJEJCYmonv37grjx48fj+joaHzxxRe4du0anj59ipMnT2L48OEFLhTbt2+P2rVrY/Dgwbhz5w4uXLiAH374QS5m4MCBqFy5Mnr27IkLFy4gNDQU586dw+TJk/Hy5UsAwOTJk7F48WIcOHAA//77L8aNG4fY2Ng8zz116lScOXMG8+bNQ0hICLZt24Y1a9Zg2rRpspi2bdtizZo1uHnzJgIDA/H111/LXbk3NzeHjo6ObBK5uLj3yxSkp6djxIgRCAoKwrFjxzB79mxMmDBBNp67bdu22L59Oy5cuID79+9jyJAhuW5pt7Ozw5kzZxAZGYmYmBgQEREREX2MzTePQlCLzbfg7mA1AH/12o92Nu1KpuAGABN7QHZnrwhwHgBMDAQ6L2HBXQzK9JXuj9Xetj08rT1xM+om3iS/gZmuGRqZNyr2ReaPHz8uuy3cwMAAjo6O2Lt3Lzw8PBTGW1lZ4dKlS5gxYwY6duyItLQ02NraolOnTgWaKAzIusX6wIEDGDFiBJo2bQo7OzusWrUKnTp1ksXo6uri/PnzmDFjBvr06YOEhARUrVoV7dq1k135njp1KiIiIjB06FCIxWIMHz4cvXv3liuCP9SoUSP8/vvvmDVrFubNmwdLS0vMnTtXbhK15cuXY9iwYXBzc4OVlRX8/Pxw48YN2XZ1dXWsWrUKc+fOxaxZs9CmTRsEBAQAANq1a4eaNWvCzc0NaWlpGDBggNxSad999x2ePn2Kbt26wcjICPPmzct1pXv58uXw9vbGr7/+iqpVq3LJMCIiIiIqlJTMFPgH+2N98LoCxRup20JdrOIy7N0TwLT6+8fqWoDnD8D9/UC7WYBFPdXmU8GIhIIstqxC8fHxMDIyQlxcXK5bnVNTUxEaGgp7e3toa2uXUIbvZd9erq6uXnLfUlVQ2et0//nnnyWdisqour+Vts8bqZZUKkVUVBTMzc0L/CUf0cdifyNVYV+jopQhzcCBRwew5tY6xKS9LfB+U+utxNDGxXd3rZyIO8CZucCTs8D4f4DKNd9vE4T874OnPOVVu+ZUIa90ExERERERfQypIMXJZyfhG7gKr5Je5L/DfwQBEEuM8WUDj+JLLlv0U+DvBcD9P963/T0P6Pfb+8csuFWGRTcREREREVEBXA6/jBWBvngYE6w0Jvs+4pw1bXbbV7UmQfMjJ0gukITXwPllwI0t79faBgAja6BW5+I7L+WJRTeVSVu3bi3pFIiIiIiogrj/9j6WB65E4OtrSmOaW7SEt6sXDgfdl1+nG1lXuL+qNQnT2/QtngRT44DLq4ErP8uvta1jArhNz5qVXF2reM5N+WLRTUREREREpEBoXCj8bq7GmeenlMbUMamLaa7eaGrZNOtxmzqY3KI3/O+cRUhkGGpZ2GFgA8/iu8IdFQxs6QKkRL9v09DLWme7xQRAW/lYY1INFt1EREREREQ5vE56jXW31+HA4wOQQqowxlrfFt6uXgqX/tJUV8eQhu1UM3GfaU1Ar3JW0S3WAFyHZV3d1jfPf19SCRbdREREREREAOLS4rDp3ibsCPJHhpCuMMZU2wyTGk1Aj+o9VL/0lyAA4beAqo3et6mpA+1mA0F/AZ7fZ63BTaVKhS26U4OCkPY0FNKkJIj19KDlYA9tJ6eSTouIiIiIiFQsJTMFO4N3YsPdjUjOTFQYo6dugDENRuELxy+grV4Cy6mGXQJO+wAvrwFjLgCWzu+31emW9UOlUoUquqWpqYg/chTRO7YjLfjfXNu16jjCZNBXMOzaBWKuS0xEREREVK5lSDPw5+M/sebmWkQrWWtbQ6yFwU6DMLz+cBhqlsD46Mh7wOk5wOMc48rPzAEG7VN9LvRRKkzRnRYaihcjRiIjPBxQMqYi7WEIIn74AW9//hk2mzdB085OtUkSEREREVGxEwRBttb2y6TnCmPEEON/tf6HsQ3GwkzXTMUZAogOBc4uBO7tBSC8bzdzBFyHZ91qzrW2y4RiHNFfeqSFhiKs/wBkvH6d1SBVPBlCdnvG69cI7dcf6WFhqknwP2FhYRCJRLh9+3axn0skEuHPP//8pGMMHToUvXr1+qh9AwICIBKJEBsb+0k5FMV5tm7dCmNj42LNozgUxXtIREREVNFcjbiKfocGYNq5aUoL7g62HXGw90HMajFL9QV3YhRwdDqwpglw73fICm7DakDPtcDYy4BjVxbcZUi5v9ItTU3FixEjIU1KAiSSgu0kkUCalITnw0fA4eiRIrnVfOjQodi2bZvssYmJCZo0aYKlS5fC2dk5jz2JFIuIiEClSpVKOg0iIiKiMuHBuwdYcX0lrr3+R2lMM4sWmOI6GXVN66owsxyi/gV+bQtkJL1v0zEB3KYBriMADQ6BLYvK/ZXu+CNHs24pL2jBnU0iQUZ4OOKPHiuyXDp16oSIiAhERETgzJkzUFdXR7dunPCgPMjIyChQXHq64lkwP4aFhQW0tLSK7HhERERE5VFYXBi8z07FgMMDlBbcdSrVxcYOG7Gx44aSK7gBoHItoHLNrP/X0APcvgEm3wZajGfBXYaV+6I7esd2pWO48yUSZe1fRLS0tGBhYQELCwu4uLhgxowZePHiBd68eaN0n6CgIHTp0gX6+vqoUqUKvvrqK7x9+36SBw8PD0yaNAnffPMNTExMYGFhAR8fH7ljPHr0CG5ubtDW1oaTkxNOnTqFD7169Qr9+/dHpUqVYGpqip49eyIsx+31EokE3t7eMDY2hqmpKb755hsIgpDrODk9e/YM3bt3R6VKlaCnp4e6devi6NGjcjE3btyAq6srdHV10bJlSzx8+FBu+7p161C9enVoamqidu3a2L79/fuh6Hb82NhYiEQiBAQEKM1r69atsLGxga6uLnr37o13797lijl06BAaN24MbW1tODg4YM6cOcjMzJRtF4lEWL9+PXr27Ak9PT3Mnz9f4bns7Owwf/58DB06FEZGRhg1ahQA4PLly3Bzc4OOjg6sra0xadIkJCW9/0YzIiICXbt2hY6ODuzt7bFz507Y29tj1apVcjnkvL383r17aNu2LXR0dGBqaorRo0cjMfH97JvZwwF++uknWFpawtTUFOPHjy/wFwZEREREZUlUchTmXJ6Lnn/2xKnnJxXGVNO3wXL35djTfReaWTZTbYJSCfDkrHybWAx8NgdoMiqr2G77A6BtpNq8qMiV66I7NSgoa5ZyZWO48yMISAsKRmpQUNEmBiAxMRH+/v6oUaMGTE1NFcZERETA3d0dLi4uCAwMxPHjx/H69Wv069dPLm7btm3Q09PDP//8g6VLl2Lu3LmywloqlaJPnz5QU1PD1atXsX79esyYMUNu/+TkZHh6ekJfXx/nz5/HxYsXoa+vj06dOsmuzC5fvhybN2/Gpk2bcPHiRURHR+PAgQN5Psfx48cjLS0N58+fx71797BkyRLo6+vLxfzwww9Yvnw5AgMDoa6ujuHDh8u2HThwAJMnT8bUqVNx//59jBkzBsOGDcPZs2c/PFWB/fPPPxg+fDjGjRuH27dvw9PTM1fBfOLECQwaNAiTJk1CUFAQfvnlF2zduhULFiyQi5s9ezZ69uyJe/fuyeX9oWXLlqFevXq4ceMGZs6ciXv37qFjx47o06cP7t69iz179uDixYuYMGGCbJ/BgwcjPDwcAQEB2LdvHzZs2ICoqCil50hOTkanTp1QqVIlXL9+HXv37sXp06fljgkAZ8+exZMnT3D27Fls27YNW7duxdatWwvxChIRERGVbnFpcfC94YtO+7rgj0d7IUXuWsBEqzJmt5iNQ73/Qge7DhCpcny0IAD/HgXWtQK29wKeX5Xf7uABdP0J0DdXXU5UvIRSJi4uTgAgxMXF5dqWkpIiBAUFCSkpKQU6Vuyhw0JQbcdP/ok9fFjh8aVSqZCeni5IpdJ8cxkyZIigpqYm6OnpCXp6egIAwdLSUrhx44YsJjQ0VAAg3Lp1SxAEQZg5c6bQoUMHueO8ePFCACA8fPhQEARBcHd3F1q3bi0X06RJE2HGjBmCIAjCiRMnBDU1NeHFixey7ceOHRMACAcOHBAEQRA2bdok1K5dW+55pKWlCTo6OsKJEycEQRAES0tLYfHixbLtGRkZQrVq1YSePXsqfc7169cXfHx8FG47e/asAEA4ffq0rO3IkSMCANn727JlS2HUqFFy+/Xt21fo0qWLwtdLEAQhJiZGACCcPXtW7jwxMTGCIAjCF198IXTq1EnumP379xeMjIxkj9u0aSMsXLhQLmb79u2CpaWl7DEAwcvLS+lzz2Zrayv06tVLru2rr74SRo8eLdd24cIFQSwWCykpKUJwcLAAQLh+/bps+6NHjwQAwk8//SR7n3K+hxs2bBAqVaokJCYmyvY5cuSIIBaLhcjISEEQsvqgra2tkJmZKYvp27ev0L9/f4W5F/bzRuWLRCIRIiIiBIlEUtKpUAXA/kaqwr5WvqVkpAib7m0Smu1oIdTbWk/hT9MdzYVN9zYJyRnJxZuMJFOQPDknxJz/VZA8OScIkv/+/gq7LAgbOwjCbMP3P5s6CkIB6gkqffKqXXMq1xOpSXPcrvtJx0ksmuN4enpi3bp1AIDo6GisXbsWnTt3xrVr12Bra5sr/saNGzh79myuq8MA8OTJE9SqVQsAck3EZmlpKbsqGhwcDBsbG1SrVk22vUWLFrnO8/jxYxgYGMi1p6am4smTJ4iLi0NERITcfurq6nB1dc3zFvNJkyZh7NixOHnyJNq3b4///e9/uXLN+djS0hIAEBUVBRsbGwQHB2P06NFy8a1atYKfn5/Sc+YnODgYvXv3lmtr0aIFjh8/Lnt848YNXL9+Xe7KtkQiQWpqKpKTk6GrqwsAcHV1LdA5P4zLfr39/f1lbYIgQCqVIjQ0FCEhIVBXV0ejRo1k22vUqJHnpGnBwcFo0KAB9PT0ZG2tWrWCVCrFw4cPUaVKFQBA3bp1oaamJouxtLTEvXv3CvQ8iIiIiEqjTGkm/nr8F1bf/Bnv0hQP28xea3tYvWEw0irm27WDDgLHZ0AcHw7j7DY9c8DQCoi4LR9b1RVo+yNnIi/nynXRLc5RgHzScfSL5jh6enqoUaOG7HHjxo1hZGSEX3/9VeGYYKlUiu7du2PJkiW5tmUXqACgoaEht00kEkH63y31ioriD2+fkUqlaNy4sVwRmM3M7OOXSBg5ciQ6duyII0eO4OTJk1i0aBGWL1+OiRMnKsw9Oy9pjuEAH+YqCIKsTfzfWP2czzG/8cl5fUmQTSqVYs6cOejTp0+ubdo5ZrLXK2D/+jBOKpVizJgxmDRpUq5YGxubXOPas+WVe87X5UM52/PqK0RERERliSAIOP38NFYE+uFl4jOFMWKI0btmH4xzGQtzXRXcrh10EPh9MOTW1QaApKisn2yVawPtZnHprwqiXBfdWg72RXQchyI5zodEIhHEYjFSUlIUbm/UqBH27dsHOzs7qKt/3Fvl5OSE58+fIzw8HFZWVgCAK1eu5DrPnj17YG5uDkNDQ4XHsbS0xNWrV+Hm5gYAyMzMxI0bN+SuxipibW2Nr7/+Gl9//TW+++47/Prrr3JFd17q1KmDixcvYvDgwbK2y5cvo06dOgDefyEQERGBhg0bAkC+a5w7OTnh6lX5cTMfPm7UqBEePnwo9wVJUWrUqBEePHig9PiOjo7IzMzErVu30LhxYwDA48eP81xr3MnJCdu2bUNSUpKsyL906RLEYrHsjggiIiKi8uKfiH+w/PpKBMc8UBrzmU0HTGo0EXZGdqpJSioBjs9AroI7J5Ea0G0l4DIQUCvXpRjlUK4nUtN2coJWHcdPmr1cy6kOtP8r8j5VWloaIiMjERkZieDgYEycOBGJiYno3r27wvjx48cjOjoaX3zxBa5du4anT5/i5MmTGD58OCQFXAKtffv2qF27NgYPHow7d+7gwoUL+OGHH+RiBg4ciMqVK6Nnz564cOECQkNDce7cOUyePBkvX74EAEyePBmLFy/GgQMH8O+//2LcuHF5FoEA4OXlhRMnTiA0NBQ3b97E33//LSuYC2L69OnYunUr1q9fj0ePHmHFihXYv38/pk2bBgDQ0dFB8+bNsXjxYgQFBeH8+fP48ccf8zzmpEmTcPz4cSxduhQhISFYs2aN3K3lADBr1iz89ttv8PHxwYMHDxAcHIw9e/bke+yCmjFjBq5cuYLx48fj9u3bePToEQ4ePCj7MsLR0RHt27fH6NGjce3aNdy6dQujR4+Gjo6O0qvZAwcOhLa2NoYMGYL79+/j7NmzmDhxIr766ivZreVEREREZV3QuyCMPDEaI0+OVFpwN63SDLu77sYKz+WqK7gB4NllID487xhBApg4sOCuYMp10Q0AJoO++qTZy00GfVVkuRw/fhyWlpawtLREs2bNZLNMe3h4KIy3srLCpUuXIJFI0LFjR9SrVw+TJ0+GkZGR7Nbq/IjFYhw4cABpaWlo2rQpRo4cmWsWbl1dXZw/fx42Njbo06cP6tSpg+HDhyMlJUV25Xvq1KkYPHgwhg4dihYtWsDAwCDX2OgPSSQSjB8/HnXq1EGnTp1Qu3ZtrF27tkB5A0CvXr3g5+eHZcuWoW7duvjll1+wZcsWuddr8+bNyMjIgKurKyZPnqx06a5szZs3x8aNG7F69Wq4uLjg5MmTuYrpjh074vDhwzh16hSaNGmC5s2bY8WKFQrH3X8MZ2dnnDt3Do8ePUKbNm3QsGFDzJw5U27IwG+//YYqVarAzc0NvXv3xqhRo2BgYCB3e3tOurq6OHHiBKKjo9GkSRN8/vnnaNeuHdasWVMkORMRERGVpOfxzzE1YBr6H+6PfyKvKIypXakONny2AZs6bUTdyipeazszDQg+WLDYxNfFmwuVOiKhIINcVSg+Ph5GRkaIi4vLdatzamoqQkNDYW9vr7T4+JA0NRVPu3RFxuvXQAGvDgMA1NSgUaUKHI4egVjJuQRBQGZmJtTV1VW7zABVOC9fvoS1tTWOHz+ODh1Us6zFx3zeqPyQSqWIioqCubl5gb/kI/pY7G+kKuxrZc+b5DdYd2cd9oXshxSK/5avqmeNKa6T8ZntZxCLVPy+SiXA3d+BswuBuOcF22fIYcC+TfHmRSqRV+2aU7m/r0GsrQ3rTRsR1n9A1mzmBSm81dQg1tODzeZNSgtuouL0999/IzExEfXr10dERAS++eYb2NnZoU0b/oImIiKi8i8+PR5b7m/BtgfbkSFNUxhTSasyJjYah141ekFDrKEwptgIAhByAjgzB4gKet8u1gCkmVA8rluUNYO5bUtVZUmlRLkvugFAy94e9r/vwfPhI5ARHp41Q6CiC/z/tWtUqQKbzZugaWen8lyJgKxZ2L///ns8ffoUBgYGaNmyJXbs2JFr9nEiIiKi8iQ1MxW7/92N9Xc2ICkzQWGMrro+RjmPwMA6A6GjrqPiDAE8vwqc9gGef3Cbe/V2gIMHcGoWABHkC+//7lLstBgQq4EqlgpRdAOApp0dHI4eQfzRY4jesR1pQcG5YrTqOMJk0Fcw7NKZV7ipRHXs2BEdO3aUa8sezkBERERU3mRKM3HwyUGsuvkz3qVGKYzREGlikNNAjKg/ovjX2lbk9QPgzDwg5Jh8e9XGQHsfwD5rlR9UssuaxTznpGqGVlkFt1MPVWVLpUiZLLo/dhi6WFsbxn16w7hPb6QGBSEtNBTSxCSI9fWgZW8PbSenIs6UqOwqZdM9EBERUTkkCALOPD+DFYF+eJEYpjBGDDF61+iNsS5jUUWvhFZlefsYWNcKclevTWtmrbVdp7v8WttOPQDHrpCGXUL8qxAYVq0FsV0rXuGuwMpU0Z19a21ycjJ0dD7tVhJtJycW2UR5SE9PBwCoqfEfCCIiIip61yKu4afAlQiOvq80pp3NZ5jcaCLsjexVmJkClWsANT8DHp0EDKwAj2/zXmtbrAbYtUaqbi0Ympt//BLGVC6UqaJbTU0NxsbGiIrKuuVEV1e3RGcN5+zlpEqq7G9SqRRv3ryBrq4u1NXL1K8JIiIiKuWC3wVjRaAvrkZeVhrjat4UU5tMQb3K9VSY2X/SEoG7ewDX4fJXsNvNBuxaA01HAxolMJacyqwy99e0hYUFAMgK75IkCAKkUinEYjGLbip2qu5vYrEYNjY27NtERERUJJ7HP8eqm6tx4tlxpTG1jB0xtckUtLBsofq/QTLTgRtbgHNLgeS3gK4pULfX++0W9bJ+iAqpzBXdIpEIlpaWMDc3R0ZGRonmIpVK8e7dO5iamnKtRyp2qu5vmpqa7NdERET0yd6mvMX6O+ux9+EfStfattKzxhTXSehg26EE1tqWAvf/AP6eD8Q+e98esBhw6il/tZvoI5S5ojubmppaiY81lUql0NDQgLa2NosTKnbsb0RERFSWJKQnyNbaTpemKowx1jLFxIbj0Ltm75JZa/vRqay1tl9/MK68bh+g7Y8suKlIlNmim4iIiIiISp80SVrWWtu3NyAxM15hjI6aPkY3GIEvHb+EroauijME8Pyf/9ba/mBcefW2WTOSWzVUfU5UbrHoJiIiIiKiT5YpzcShJ4ew6uYavFWy1ra6SCNrre16I2CsbazaBLO9ewJs7iDfZtUoa61tB/cSSYnKNxbdRERERET00QRBwN8v/saKQD88TwhVGCOCGL1q9MQ4l3Gw0LNQcYYfMK0O1O0NPDgAmNb4b63tHryVnIoNi24iIiIiIvoo1yOvY3ngSjx4d09pTFvrdpjceBIcjBxUmNl/kt4BN7cCrbyy1s6WJTUTcPAAXAYpX2ubqIiwhxERERERkULpmZnYeScAz+MjYWNogS8beEBTXR3/Rv+LFYG+uBJxSem+jcxdMdV1CpzNnFWY8X/SEoGr64DLq4C0eEDfAmg48P120+pZP0QqwKKbiIiIiIhyWXZhL7Y/WgVBLVbWtuKOAWwNbRGWdF/pfjWNa2Oq6xS0tGpZMmtt39yWtdZ2Uo5x5RdXAi5f8hZyKhGFXnfo/Pnz6N69O6ysrCASifDnn3/KbRcEAT4+PrCysoKOjg48PDzw4MGDosqXiIiIiIiK2bILe7HtyVxIxbFy7VJxgtKC21K3Gpa6LcUfPX5Hq6qtVFtwS6XA3b3Az02Ao9PeF9wiNaDxUGDIQRbcVGIKXXQnJSWhQYMGWLNmjcLtS5cuxYoVK7BmzRpcv34dFhYW+Oyzz5CQkPDJyRIRERERUfFKz8zE9kerAOSuUxXVrcaaJvix2Y840ucgOtt3hlhU6BLj4wkC8Og0sMEN2D8SiAl7v82pFzD+GtDdDzC0Ul1ORB8o9O3lnTt3RufOnRVuEwQBvr6++OGHH9CnTx8AwLZt21ClShXs3LkTY8aMybVPWloa0tLSZI/j47PW8pNKpZBKpYVNT6WkUikEQSj1eVL5wP5GqsT+RqrE/kaqwr5WMP53zkJQi0V+14XVRVoY22C03FrbKn9tY59DtLMvRML78wr27hDazX6/1nYJvd/sb+VfQd/bIh3THRoaisjISHTo8H7dOy0tLbi7u+Py5csKi+5FixZhzpw5udrfvHmD1NTUokyvyEmlUsTFxUEQBIjFKvxGjyok9jdSJfY3UiX2N1IV9rX8SQQJzoQdLVBs20qD0aNKDyTGJCIRicWcmTLaMKzdB7r//oEMs7pIaDYN6dVaZm2KUrxWuKqwv5V/Bb2bu0iL7sjISABAlSpV5NqrVKmCZ8+eKdznu+++g7e3t+xxfHw8rK2tYWZmBkNDw6JMr8hJpVKIRCKYmZnxg0TFjv2NVIn9jVSJ/Y1UhX1NOUEQEPAyACtv+OFZouK1tj9Uz6oOzM3NizmzHOJeQnTtFwhtZwJqmu/bO86GtF5XqNXpAWNV3tqeD/a38k9bW7tAccUye/mHkyYIgqB0IgUtLS1oaWnlaheLxWWic4pEojKTK5V97G+kSuxvpErsb6Qq7Gu53Xh9A8uvr8S9d3cKFC8IgFhijIENPFXzOiZHAxeWA9d+BSRpEBnbAs1Gv99eySbrpxRifyvfCvq+FmnRbWFhASDrirelpaWsPSoqKtfVbyIiIiIiKjkPox/C94YfLoZfUBojCPKTpwlC1n+/qjUJmurFvPpwehJwdS1w6b+1trNd+wVoMhJgIUtlRJF+Uuzt7WFhYYFTp06hYcOsiQvS09Nx7tw5LFmypChPRUREREREH+FlwkusubUGR0KPAhAUxlQ3qgU7HVf8/eoIBLU4WbtYYoyvak3C9DZ9iy9BSQZwY2vutbbVtYFmY4BWXiy4qUwpdNGdmJiIx48fyx6Hhobi9u3bMDExgY2NDby8vLBw4ULUrFkTNWvWxMKFC6Grq4svv/yySBMnIiIiIqKCe5fyDhvubsCeh79DImQqjLHQrQqvxhNlS3+lZ07HzjsBeB4fCRtDC3zZwKP4rnBLpcCD/cDf84GYHOPKRWKg4SDA/VvAqGrxnJuoGBX6ExMYGAhPT0/Z4+xJ0IYMGYKtW7fim2++QUpKCsaNG4eYmBg0a9YMJ0+ehIGBQdFlTUREREREBZKYnohtQduw5d5WpEkVrw5kpFkJ4xuOxec1P4eGmoasXVNdHUMbt1dNognhwJ9jAUn6+7Y6PYC2MwGzWqrJgagYFLro9vDwgCAovg0FyJoswMfHBz4+Pp+SFxERERERfYJ0STr2PNyDdbc3ICEjVmGMtpouRtYfjq+cvpKttV1ijKoBriOAf9YBdm2A9nOAao1LNieiIlDMsx8QEREREZEqSaQSHAk9Ar8bqxGVEqkwRk2kgS8dB2CU8yhU0q6k4gwBvAkBLq8COi8FNHMU+27TgJqfAdXbys/gRlSGsegmIiIiIioHBEHAuZfnsCLQF6HxTxTGiCBG9+rdMcFlPCz1LRXGFKu4V0DAIuC2PyBIARN7oM3U99v1KgM12qk+L6JixKKbiIiIiKiMu/n6JpYHrsTdt7eVxrhX84BXo8moUamG6hLLlhwNXFwB/LMBkKS9b7+zG2g1hbORU7nGopuIiIiIqIwKiQnBykA/XAw/rzSmgVlDTHP1hou5i+oSy5aeBPyzHrjoB6S9X3oMWoZAq8lA87EsuKncY9FNRERERFTGvEp8hTW31uDw0yNQtta2g1FNTHX1QpuqbSBS9fhoSQZw8zfg3BIg8fX7djUtoNlooLU3oGui2pyISgiLbiIiIiKiMiI6NRq/3Pklz7W2q+hawavxRHSx7wKxqISuIqfEACdnAhlJWY9FYsBlIODxbdYs5UQVCItuIiIiIqJSLikjCb89+A2b7m9BmiRFYYyhhjHGNfwa/Wr1k1tru0TomwMtxgHnlwF1uv+31nbtks2JqISw6CYiIiIiKqXSJenYG7IXa2+tR7yStba11HQwov4wDHYaDD0NPdUmCACvbgAXVgA9fwZ0jN+3t5wE1OoEVHNVfU5EpQiLbiIiIiKiUkYileBo6FH43ViN1ykRCmPURBr4wrE/RjmPgol2MY2PlkqAZ5ezxmXrVwFsWwJitaxtbx8Bf88Dgv7KemxWG2g36/2+2oYsuInAopuIiIiIqNQQBAEXXl3A8usr8TT+sZIoEbo7dMf4huNQVb9q8SUTdBA4PgOID3/fZmgFuM8AXt0Ebu0ABMn7bQ+PA54/vC/KiQgAi24iIiIiolLhdtRt/HR9Oe7ksdZ2m6rumNJ4MmpWqlm8yQQdBH4fjFwzo8eHA4cmy7fpmQPu3wCNhrDgJlKARTcRERERUQl6FPMIvjdX4fzLAKUxzpVdMK2JNxqaNyz+hKSSrCvcSpYik9E0AFpPBpqPAzRLYCw5URnBopuIiIiIqASEJ4Zjza2fcejpISgrcO0Nq2Oq6xS4VXNT3Vrbzy7L31KuTJ8NgGOX4s+HqIxj0U1EREREpEIxqTHYcHcDdv27BxIhQ2GMuY6lbK1tNVXfsp34umBxGcnFmwdROcGim4iIiIhIBZIzkrEtaBs239uKVInigjV7re2+tfpCU01TxRn+R79K0cYRVXAsuomIiIiIilGGJCNrre3b6xGXHqMwRktNB8PrDcWQukNKZq3tnGxbZs1SHh8Bxbe9i7K227ZUdWZEZRKLbiIiIiKiYiAVpLK1tiOTFY+RVhOpo3/tfhjtPBqmOqYqzlAJsRrQacl/s5eLIF94/zeuvNNizlROVEAsuomIiIiIipBsre1AXzyNe6QkSoSu9l0xoeF4VDOoptL8CsSpB9DvN8XrdHdanLWdiAqERTcRERERURG5HXUbywNX4vabm0pjWlu1gVfjyahtUluFmX0Epx6AY9es2cwTX2eN4bZtySvcRIXEopuIiIiI6BM9iX2ClTd8cS6PtbbrmzbA1CZT0LhKY9Ul9qnEaoB9m5LOgqhMY9FNRERERPSRIhIjsOb2zzj05BAESBXG2Bk4YGqTKXCv5q66tbaJqNRg0U1EREREVEixqbH49d6v2Bm8C5lK1to207HA5EYT0M2hm+rX2iaiUoNFNxERERFRASVnJGN70HZsurcFKZIkhTH6GkYY5zIG/Wv3L7m1tomo1GDRTURERESUjwxJBvY92oefb61DbHq0whgtsTaG1R+KIU5DoK+pr+IMiai0YtFNRERERKSEVJDieOhxrLyxCpHJrxTGZK+1Pcp5FCrrVFZxhkRU2rHoJiIiIiL6gCAIuBR+Ccuvr8TjuBAlUSJ0seuMCY0mwNrAWqX5EVHZwaKbiIiIiCiHO2/uYEWgL25GBSqNaWXVGlMae5X+tbaJqMSx6CYiIiIiAvA09il8b/rh7Iu/lcbUNa2Paa7ecLVwVWFmRFSWsegmIiIiogotMikSa2+vxZ+P/1K61ratgT28Xb3gae3JtbaJqFBYdBMRERFRuZeemQn/O2cREhmGWhZ2GNjAE8mZidh4byP8g3cqXWu7snYVTG48Ad0dunOtbSL6KCy6iYiIiKhcW3ZhL7Y/WgVBLTar4S2w4q421MVSZCJd4T766ob42mU0BjgOgJaaluqSJaJyh0U3EREREZVbyy7sxbYncwExIHdTuDgVmQriNcXaGFpvMIbWHQoDTQMVZUlE5RmLbiIiIiIql9IzM7H90aqsgjufYdhiqKFf7b4Y02AM19omoiLFopuIiIiIyiX/OwEQ1GKR37RntQwbwrfdAlgbcq1tIip64pJOgIiIiIioqN17cw+/PVpRoNgGxh1YcBNRseGVbiIiIiIqN57GPcWqG6tx5sXpAu9jY2hRjBkRUUXHopuIiIiIyrzIpEisu70Ofz7+E1Ila21/SBAAscQYXzbwKN7kiKhCY9FNRERERGVWXFpc1lrbQTuRIShe/ksQsv6bczK17Lavak2Cpjr/JCai4sPfMERERERU5qRkpsA/2B+/3t2E5MxEhTHZa22Hv9PArsfr3q/Tjawr3F/VmoTpbfqqKGMiqqhYdBMRERFRmZEhzcCBRwew5tY6xKS9VRijKdbGkLpfYWi9oTDUNAQATG3ZD/53ziIkMgy1LOwwsIEnr3ATkUrwNw0RERERlXpSQYqTz07CN3AVXiW9UBgjhho+r/U/fN3ga5jpmslt01RXx5CG7RAVFQVzc3OIxVzEh4hUg0U3EREREZVql8MvY0WgLx7GBCuN6WjbCZMaTYSNoY0KMyMiyh+LbiIiIiIqlR68fYDlgStw/fU1pTHNLVpiiutkOJk6qTAzIqKCY9FNRERERKVKaFwoVt1cjdPPTymNqWNSF9NcvdHUsqkKMyMiKjwW3URERERUKrxOeo11t9fhwOMDStfarqZvi6muXmhn0w6inGuAERGVUiy6iYiIiKhExaXFYfO9zdgetEPpWtumWmaY2Gg8etboCXUx/4QlorKDv7GIiIiIqESkZKZgZ/BObLi7Uela23rqBhjTYBS+cPwC2uraKs6QiOjTsegmIiIiIpXKlGbiwOMDWHNzLaKVrLWtIdbCYKdBGF5/uGytbSKisohFNxERERGphCAIOPXsFFbe8MPLxOcKY8QQo0/N/2Gsy9cw1zVXcYZEREWPRTcRERERFburEVex/PpK/BsTpDTmM9sOmNxoEmwNbVWYGRFR8WLRTURERETF5sG7B1gR6ItrkVeVxjS1aA5vVy/UNa2rwsyIiFSDRTcRERERFbmwuDCsurUap56dVBrjWMkJU5tMQXPL5irMjIhItVh0ExEREVGRiUqOwrrb67H/0b481tq2wZTGk/GZ7Wdca5uIyj0W3URERET0yeLT47H53mb8FrQDGdI0hTEmWpUxsdF49KrRi2ttE1GFwd92RERERPTRUjNTsfPfndhwZyOSMhMUxuiq62O080h8WedL6KjrqDhDIqKSxaKbiIiIiAotU5qJvx7/hdW3fsa71DcKYzREmvjqv7W2jbSMVJwhEVHpwKKbiIiIiApMEAScfn4aKwP98CLxmcIYMcToXbMPxjb4GlX0qqg4QyKi0oVFNxEREREVyD8R/2D59ZUIjnmgNKa9TQdMajQB9kb2KsyMiKj0YtFNRERERHkKeheEFYG++CfyitKYJlWawtt1CupVrqfCzIiISj8W3URERESk0PP45/C7uQonn51QGlO7Uh1MdZ2CFlYtVJgZEVHZwaKbiIiIiOS8SX6DdXfWYV/IfkghURhTVc8aXq6T0MG2A8QisYozJCIqO1h0ExERERGArLW2t97fim0PtiNdmqowppJWZUxoOBa9a/aGhlhDxRkSEZU9LLqJiIiIKrjUzFTs/nc3frnzKxIz4xXG6KrrY5TzCAysM5BrbRMRFQKLbiIiIqIKKlOaiYNPDmLVzZ/xLjVKYYyGSBODnAZiRP0RXGubiOgjsOgmIiIiqmAEQcCZ52ewMtAPzxPDFMaIIEbvGr0w1mUsLPQsVJsgEVE5wqKbiIiIqAK5HnkdP11fgaDo+0pj2lm3x6TGE+Fg5KDCzIiIyicW3UREREQVQPC7YKy44YurEZeVxjQ2b4KprlNQ36y+CjMjIirfWHQTERERlWMv4l9g1a3VOB52TGlMTePamObqjRZWLSASiVSYHRFR+ceim4iIiKgcepvyFuvvrMfeh38oXWvbSs8aUxpPQgc7rrVNRFRcWHQTERERlSMJ6QnYcn9LnmttG2uZYmLDcVxrm4hIBVh0ExEREZUDaZI07P53N9bf+RWJGXEKY3TU9GRrbetq6Ko4QyKiiolFNxEREVEZk56ZiZ13AvA8PhLVDM1goJ+ItbfX4W3qa4Xx6iINDKzzJUbWHwljbWPVJktEVMEVedGdmZkJHx8f+Pv7IzIyEpaWlhg6dCh+/PFHiMUcK0RERET0KZZd2Ivtj1ZBUIvNN1YEMXpW74nxDcdxrW0iohJS5EX3kiVLsH79emzbtg1169ZFYGAghg0bBiMjI0yePLmoT0dERERUYSy7sBfbnswFxEB+c4x7WreFV6PJcDDmWttERCWpyIvuK1euoGfPnujatSsAwM7ODrt27UJgYGBRn4qIiIiowkjPzMT2R35ZBXceFbdL5caY3tQbzmbOqkuOiIiUKvKiu3Xr1li/fj1CQkJQq1Yt3LlzBxcvXoSvr6/C+LS0NKSlpckex8fHAwCkUimkUmlRp1ekpFIpBEEo9XlS+cD+RqrE/kaqxP5WMFtvHoegFpf/Fe4qX6KeaT2+ngqwr5Eqsb+VfwV9b4u86J4xYwbi4uLg6OgINTU1SCQSLFiwAF988YXC+EWLFmHOnDm52t+8eYPUVMXLXJQWUqkUcXFxEASB49Wp2LG/kSqxv5Eqsb/lLyI5AltDfipQ7KPXzxAVFVXMGZVN7GukSuxv5V9CQkKB4oq86N6zZw927NiBnTt3om7durh9+za8vLxgZWWFIUOG5Ir/7rvv4O3tLXscHx8Pa2trmJmZwdDQsKjTK1JSqRQikQhmZmb8IFGxY38jVWJ/I1Vif8vblfAr+Oafb5AgiS9QfC0LO5ibmxdzVmUT+xqpEvtb+aetrV2guCIvuqdPn45vv/0WAwYMAADUr18fz549w6JFixQW3VpaWtDS0srVLhaLy0TnFIlEZSZXKvvY30iV2N9IldjfchMEAVsfbIXvTV9IhfxvYRQEQCwxxsAGnnwd88C+RqrE/la+FfR9LfKiOzk5OdfJ1dTUOJaBiIiIqICSM5Lhc9kHx8KO5domCFn/zTmZWnbbV7UmQVO9yP+8IyKiT1Dkv5W7d++OBQsWwMbGBnXr1sWtW7ewYsUKDB8+vKhPRURERFTuvEx4iclnJyMkJiTXtvY27VFZ3Bh7nvwit063WGKMr2pNwvQ2fVWYKRERFUSRF92rV6/GzJkzMW7cOERFRcHKygpjxozBrFmzivpUREREROXK5fDL+Ob8N4hLi5NrF0GEiQ0nYmT9kRCJRJjeagB23gnA8/hI2Bha4MsGHrzCTURUShX5b2cDAwP4+voqXSKMiIiIiOQJgoBtD7Zh5c2VucZvG2gYYLHbYrhVc5O1aaqrY2jj9qpOk4iIPgK/EiUiIiIqQSmZKZh9eTaOheYev13dqDr82vrB1tC2BDIjIqKiwKKbiIiIqIS8THgJr7NeeBjzMNe2djbtsKD1Auhp6JVAZkREVFRYdBMRERGVgCvhVzD9/HSF47cnNJyAkfVHQiziMkNERGUdi24iIiIiFSrs+G0iIirbWHQTERERqUhe47cdjBzg5+kHOyM71SdGRETFhkU3ERERkQpw/DYRUcXEopuIiIiomOU1fnu8y3iMch7F8dtEROUUi24iIiKiYiIIAn4L+g0rbqzINX5bX0MfS9yWcPw2EVE5x6KbiIiIqBikZKbA57IPjoYezbWN47eJiCoOFt1ERERERexV4it4nfXCv9H/5trW1rotFrReAH1N/RLIjIiIVI1FNxEREVERuhpxFdPPTUdsWqxcuwgijHMZh9HOozl+m4ioAmHRTURERFQE8hu/vbjNYrhbu5dQdkREVFJYdBMRERF9opTMFMy5MgdHnh7Jtc3eyB5+nn6wN7IvgcyIiKiksegmIiIi+gR5jd/2tPbEwtYLOX6biKgCY9FNRERE9JH+ifgH085NyzV+GwDGuYzDGOcxHL9NRFTBsegmIiIiKiRBELA9aDuW31iucPz2ojaL4GHtUTLJERFRqcKim4iIiKgQOH6biIgKg0U3ERERUQGFJ4bD66wXgqODc23zsPbAotaLOH6biIjksOgmIiIiKoA8x283GIcxDTh+m4iIcmPRTURERJQHQRCwI3gHlgcuh0SQyG3T09DDotaL4GnjWULZERFRaceim4iIiEiJ1MxUzLkyB4efHs61zc7QDn5t/eBg5FACmRERUVnBopuIiIhIgfzGby9svRAGmgYlkBkREZUlLLqJiIiIPnAt4hqmnZuGmLSYXNs4fpuIiAqDRTcRERHRf/Ibv72w9UK0tWlbQtkREVFZxKKbiIiICFnjt+demYtDTw/l2sbx20RE9LFYdBMREVGFF5EYgclnJysev13NAwvbcPw2ERF9HBbdREREVKFdj7yOqQFTFY7fHttgLL5u8DXHbxMR0Udj0U1EREQVkiAI8A/2x0+BPykcv72g9QK0s2lXQtkREVF5waKbiIiIKpzUzFTMuzoPB58czLXNztAOfp5+cDDm+G0iIvp0LLqJiIioQolIjIBXgBeC3gXl2uZezR2L2izi+G0iIioyLLqJiIiowrgeeR3Tzk1DdGp0rm1fN/gaYxuM5fhtIiIqUiy6iYiIqNwTBAE7/92JZdeX5Rq/rauui4VtFnL8NhERFQsW3URERFSucfw2ERGVJBbdREREVG5FJkVi8tnJHL9NREQlhkU3ERERlUt5jd8e4zwG41zGcfw2EREVOxbdREREVK7kO3679UK0s+X4bSIiUg0W3URERFRupEnSMPfKXIXjt20NbeHn6YfqxtVLIDMiIqqoWHQTERFRuRCZFAmvs1548O5Brm1u1dywqM0iGGoalkBmRERUkbHoJiIiojIvr/Hbo51HY7zLeI7fJiKiEsGim4iIiMosQRCw699dWHZ9GTKFTLltuuq6WNB6Adrbti+h7IiIiFh0ExERURmVJknDvCvz8NeTv3Jt4/htIiIqLVh0ExERUZmT1/jtNlXbYLHbYo7fJiKiUoFFNxEREZUpgZGBmHpuKsdvExFRmcCim4iIiMqEvMZv66jrYGHrhRy/TUREpQ6LbiIiIir10iRpmH91Pv58/GeubTYGNvDz9EONSjVUnxgREVE+WHQTERFRqRaZFIkpZ6fg/rv7ubZx/DYREZV2LLqJiIio1Lrx+ga8A7wVjt8eVX8UxruMh5pYrQQyIyIiKhgW3URERFTqCIKA3Q93Y+m1pQrHby9ovQCf2X5WQtkREREVHItuIiIiKlU4fpuIiMoTFt1ERERUakQmRcI7wBv33t7Lta111dZY3GYxjLSMSiAzIiKij8Oim4iIiEqMJDMdgXd/w4vXD5Gqr48Nr84gJi0mVxzHbxMRUVnFopuIiIhKxOmLi7A4xB+v1URZDVG5Y3TUdTC/1Xx0sOug2uSIiIiKCItuIiIiUrnTFxfB+7E/BLHyGGsDa/h5+qFmpZqqS4yIiKiIsegmIiIilZJkpmP+I38IIgAikcIYTUHAjo6/wUSvsmqTIyIiKmJ5fL9MREREVHQikyKx+f5mdNvXEe/EIqUFNwCki0R4EvKXCrMjIiIqHrzSTURERMUmPj0ep8JO4UjoEQRGBkKAUOB938Q/L8bMiIiIVINFNxERERWpNEkazr88jyNPj+D8y/PIkGZ81HHMDG2KODMiIiLVY9FNREREn0wilSDwdSCOPD2C089OIyEjIf+dBEHhLeYiQUAVKdCo/lfFkCkREZFqsegmIiKijyIIAh7GPMSRp0dwNPQoopIVrPn1AX2pFJ+JjWFp6oh1b/8BBAFCjsJbJGTdfj6j1kCoqWsWW+5ERESqwqKbiIiICuVV4iscfXoUR54ewZO4J/nGawgC3JJT0FXTAm6ec6FVvR0AoKZsne73sVWkWQV3+9bfFVf6REREKsWim4iIiPIVmxqLE2EncCT0CG5F3co3XiQIcE1NQ9fEJLTXtoJRu0WAYze528nbt/4Ons2nIvDub3jx+iGsq9SGq/NgXuEmIqJyhUU3ERERKZSSmYJzL87h8NPDuPTqEjKFzHz3qa1VGV0jHqFzYjIsdKsAbRcDDb4E1BT/yaGmrokmLsNhGxUFc3NziMVczZSIiMoXFt1EREQkkynNxLWIazgSmjUhWnJmcr77WOpZoot9F3R16IqahnbA5k5A055A01GAhk7xJ01ERFSKsegmIiKq4ARBwIN3D3Dk6REcCz2Gd6nv8t3HSKyFDomJ6Fq5IRr+zx9iUY4r1CNPK5yVnIiIqCJi0U1ERFRBPY9/Lpt5PCw+LN94LTUteBhUR9eXQWj95hE0AOB1JOD2L1DF6X0gC24iIiIZFt1EREQVyNuUt1kToj09gntv7+UbLxaJ0cyiGbrq2qDd3SPQf3xcPqBub0BTr5iyJSIiKvtYdBMREZVzyRnJOPP8DI6EHsHV8KuQCJJ896lrWhddHbqik4Y5zC74As/3yAdUbwu0mw1YuRRLzkREROUFi24iIqJyKEOagSvhV3D46WEEvAhASmZKvvtU06+Grg5d0dWhK+yN7IGj04FrG+SDqjbOKrYd3IsncSIionKGRTcREVE5IQgC7ry5g8NPD+Nk2EnEpMXku4+Jtgk62nVEV4eucK7sDFHO8dhVXQH8V3Sb1gTazQLqdOeYbSIiokJg0U1ERFTGPY17mjUh2tOjeJn4Mt94HXUdtLVpi672XdHcqjk0xBpA0jsgPhwwqvo+sH5f4P4fgGM3wGWg0rW2iYiISDn+60lERFQGRSVH4VjoMRx5egTB0cH5xquJ1NDSqiW6OnSFp7UndDV0szakJQJXVwKXVgHVPYD+O97vJBYDA/cWzxMgIiKqIFh0ExERFQGJVMC10GhEJaTC3EAbTe1NoCYu2tuwE9ITcPrZaRwJPYJrEdcgQMh3H2czZ3Rz6IaOdh1hom3yfkNmOnBzG3BuKZAUldUWfAh4eQOo1rhI8yYiIqrIiqXofvXqFWbMmIFjx44hJSUFtWrVwqZNm9C4Mf8RJyKi8uf4/QjMORSEiLhUWZulkTZmd3dCp3qWn3TsdEk6Lry6gCNPj+Dci3NIl6bnu4+doV3WhGj2XWFtaC2/USoF7u8Dzs4HYsLet4vUgEaD5W8vJyIiok9W5EV3TEwMWrVqBU9PTxw7dgzm5uZ48uQJjI2Ni/pUREREJe74/QiM3XEz1zXnyLhUjN1xE+sGNSp04S0VpLj5+iaOhB7BybCTiE+Pz3efyjqV0dm+M7o6dIWTiZP8hGgAIAjA49PA6TnA6w/W567bG/D8Eahco1B5EhERUf6KvOhesmQJrK2tsWXLFlmbnZ1dUZ+GiIioxEmkAuYcCoIAoHrsK1RLjIJuZhqS1bXwUt8cT42rYs6hIHzmZFGgW81DYkJw5OkRHAs9hoikiHzj9TT00N6mPbo6dEVTi6ZQE6spDz40Oet28pwcPLNmJK/aKN9zERER0ccp8qL74MGD6NixI/r27Ytz586hatWqGDduHEaNGqUwPi0tDWlpabLH8fFZ3+ZLpVJIpdKiTq9ISaVSCIJQ6vOk8oH9jVSJ/a1g/gkOR7275/H904uoEReea/tjIyscdGiNf4Jro3kdK4XHiEyKxNHQozgaehSPYh/le051sTpaW7VGV4eucKvqBm11bdm2PN+vmh0g/q/oFqwaQmibY63tEn6f2d9IVdjXSJXY38q/gr63IkEQ8p+FpRC0tbP+8ff29kbfvn1x7do1eHl54ZdffsHgwYNzxfv4+GDOnDm52kNCQmBgYFCUqRU5qVSKuLg4GBkZQSwWl3Q6VM6xv5Eqsb/l721IKOKnToNxQjSkEEFNwaRmEogghoB0EzOYrVoBtWrVAAAJGQk4H3keZyLO4F7MvVz7KVK/Un20tWwLtypuMNQ0zDNWnBgBkSQdEiPb942CAKO/v0GqXVukOXQqVWtts7+RqrCvkSqxv5V/CQkJqFWrFuLi4mBoqPzf5iIvujU1NeHq6orLly/L2iZNmoTr16/jypUrueIVXem2trZGTExMnomXBlKpFG/evIGZmRk/SFTs2N9IldjflItPycCOPy6i2U/ToZ2ZBnUh/2+5BbEa1PR18XLFJPyVfg0XXl1ApjQz3/1qGNdAF/su6GzXGVb6iq+Uy0mOhujiSuD6r4BtKwiD9hXkKZU49jdSFfY1UiX2t/IvPj4elSpVyrfoLvLbyy0tLeHk5CTXVqdOHezbp/gffi0tLWhpaeVqF4vFZaJzikSiMpMrlX3sb6RK7G/yUjMk+O1KGDacCsZPhxcWuOAGAJFUgoyEBKh7L8DF0WrI1FB+lbmKbhV0ceiCrvZdUdukdsGSS08Crq7NWms77b9J157+DVHYhfe3kJdy7G+kKuxrpErsb+VbQd/XIi+6W7VqhYcPH8q1hYSEwNbWVskeREREpVemRIp9N1/C9/QjRMSl4rNn12GeEoPC3pytJgDm8UDLYAHnnOX3NtA0QAfbDujq0BWNqzSGWFTAP84UrbUNAOraQLMxgEX9QmZJRERERa3Ii+4pU6agZcuWWLhwIfr164dr165hw4YN2LBhQ1GfioiIqNgIgoATDyKx7MRDPHmTJGvv+fQiBJEIoo8YnSUVAZ0DpTjnLIamWBPu1u7oat8Vbaq1gaaaZiEOJAUe7Af+npd7re2GgwD3GVxvm4iIqJQo8qK7SZMmOHDgAL777jvMnTsX9vb28PX1xcCBA4v6VERERMXi8pO3WHL8Ie68iJVr/7JSMqormKW8oMQC4PAaWFLla7RpOxgGmh85YejBCcBtf/m2Oj2AtjMBs1ofnR8REREVvSIvugGgW7du6NatW3EcmoiIqNjcfxWHpSce4nzIG7n2JnaVMKOTI2rev4KPL7nfayWx+/iCGwCc+70vuu3dgPY+QNXGRZAZERERFbViKbqJiIjKkrC3SVh+KgSH7siX1LWrGOCbTrXR1tEcIpEIMf8kKTlC4UgTC3GcNw8BSQZgUe99m4MH0GwsUPMzoHrbUrX8FxEREclj0U1ERBVWVEIqVp95jF3XniNT+n6MdlVjHUztUAs9XapCTZxV0D6Ne4pTLw7BrQjOK9bXyz8o7iUQsDjrina1JsDwE/LFdefFRZAJERERFTcW3UREVOHEp2Zgw7mn2HQxFCkZElm7iZ4mJnjWwMDmNtBSVwMAhMSEYMPdDTgZdhK2EmmRFN1aDg7KNyZHAxdXAP9sACRpWW0v/gFCTgC1OxXB2YmIiEiVWHQTEVGFkZohwfYrz/BzwGPEJmfI2vU01TCyjQNGuTlAXyvrn8agd0H45c4v+PvF37K4MAsRQs0B2zdZk6IVmkgErTqO0K5TJ/e29CTg6jrgkt/7tbYBQMsIaD0ZsG/zESckIiKiksaim4iIyr1MiRT7b72C76kQhMelyto11EQY2MwWE9rWQGV9LQDA3Td38cvdX3D+5XmFxzrWRIyxR6Qfl4ggwGTQV/Jtkoz3a20nvn7frqaVtdZ26ymArsnHnY+IiIhKHItuIiIqtwRBwMmg11h24iEeRyXK2kUioLdLVUz5rBasTXQBADdf38Qvd3/B5fDLSo+nr6EPx379oH7zICRRbwCJRGlsLmpq0KhSBYZdOsu3H5wI3Nn1/rFIDLgMBDy+41rbRERE5QCLbiIiKpeuPn2HJcf/xa3nsXLtbR3NMb1jbdSxNIQgCPgn4h/8cvcXXI+8rvRYhpqGGOQ0CAPrDIShpiHSNvdCWP8BkCYlFazwVlODWE8PNps3QaytLb+tycj3RXed7kDbWVxrm4iIqBxh0U1EROXKg/A4LDvxEAEP5dfabmybtdZ2U3sTCIKAS68uYf2d9bj95rbSY1XSqoTBdQdjQO0B0NfUl7Vr2dvD/vc9eD58BDLCw7MunQsKBnn/165RpQpsNm+CpsY74MUbwLrJ+5hqroDnD0D1dkA1rrVNRERU3rDoJiKicuH5u2QsP/UQf92WX2u7VhV9fNPREe3qmAMAAl4E4Jc7v+D+u/tKj2WqbYph9Yahb62+0NXQVRijaWcHh6NHEH/0GKJ3bEdaUHCuGK06jjAZ9BUMm9WE+OJMIPggUKU+MOY8IBa/D3T/pvBPmIiIiMoEFt1ERFSmvUlIw5q/H2HntefIkMivtT3ls1ro3bAqRCIBZ56fwYa7GxAcnbs4zmaua47h9YbjfzX/B211baVx2cTa2jDu0xvGjmpI3TEDaRHRkGaIIdaQQsvSBNr/6wG8+hvYOAIQ/rsN/fW9rOK7bq9PfepERERUBrDoJiKiMikhNQO/nn+KjRdDkZz+flx1JV0NTGhbE4Oa20BdDJx8dhwb7m7A49jHSo9lpWeFEfVHoFeNXtBU0yxcIkEHgd8HQ1tTgLZtzg3hwKHJ8rF65oDHDMCxa+HOQURERGUWi24iIipTUjMk2HH1GX4++xgxOdba1s1ea7uNPXQ0RTgWehQb7m5AWHyY0mNV06+G0c6j0a16N2iINQqfjFQCHJ8BIJ9FuzUNgNZeQPOxgKZe4c9DREREZRaLbiIiKhMkUgH7b76E7+lHeBWbImvPXmt7vGcNGOuKcejpIWy8txEvEl4oPZadoR1GO49GZ/vOUBd/wj+Fzy4D8eH5x/XZADh2+fjzEBERUZnFopuIiEo1QRBwOjgKy078i5DX8mtt92xgBe/PasPCWB1/Pv4Tm+5tQniS8iK4hnENjHEe8//27js8yip///g9M0lmUkggkEKAkFBCC6AiIiAgRVrsZVUURWnuWsGf67rufgF1F6yrq66rrrpFXcEVFQ3ShFBEihAEpJNAgARCTYPUeX5/DCQMyaTAzKS9X9fFpTnPmXPOwAfNnWfOc3Rd2+tkMVsufXG5R6rXr+j0pc8FAADqJUI3AKDOWpd6Qi8u2KEN+086tQ/uFKanRnRWu3A/fbH7C3249ENlns50OU7n0M6a3GOyhkQPkdlkdtmvRvYuq95dbkkKinDPnAAAoN4hdAMA6pztGdl6eeFOLd3hHKSviG6qp0d2Vvc2/vp81+f6zcqPdDz/uMtx4pvH66GeD2lg64EymUzuWdyhjdL3M6SUJKlZO6lJlJSToYr3dZuk4CipbT/3zA0AAOodQjcAoM44cOK0Xlu8S19tOiTjvAzbMTxIT43opL4dAjV712w99cW/dbLgpMtxLg+/XJN7TFa/qH7uC9vH9khLn5e2fVXWdjJFuvo30pp3JJnkHLzPzjtyluSOj7IDAIB6idANAKh1x3IL9NbSPfpk7X6ns7ajQmyacl2chsUH67Odn2rG3I+VXZjtcpzekb31UI+H1Duyt/vCdna6tPxFaeN/ys7alqRmMdLgP0jxt0nRfR1PMT//4+bBUY7A3fVG96wDAADUS4RuAECtyckv0vsrU/WPlSlOZ203DfDVI4M76PrLQzRn1ycaPfe/yi3KdTlOv6h+mtxjsq6IuMJ9iztzUlr1urT271Jxfll7YJg06Gnpivsln7Nnene90XH29v7VjoerBUU4PlLOHW4AABo9QjcAwOsKikv0yZo0vbVsj07kFZa2+/taNGFArG6/qqm+2PuJbvz6M50pPuNynEGtB2lSj0nqEdbD/Ytc9Acp+eOyr/2aSP0fd5y1bQ0q399skWIHuH8dAACgXiN0AwC8psRu6KvkQ3pt8S6ns7Z9zCaN6ROtu/qG6Jt9n+r2b/+n/JJ8l+MMjR6qST0mqWvzrp5b7DVTpZ8/k0xmqfdEacCTUmBzz80HAAAaJEI3AMDjDMPQ0h2ZemnBTu08kuN07caeUbpvQIgWHvyvxi6cq0J7YYVjmGTS8JjhmtRjkuKaxblzcdK2ryWzj9Tl+rL25u2lm/7m+Jh40zbumw8AADQqhG4AgEet33dCL363Qz9dcNb2oLgwjRvURMuPzNbEZV+r2F5c4evNJrNGx47WxO4T1a5pO/cuLiVJWjJdSk+WgltLHYZJvray6z3vdO98AACg0SF0AwA8YsfhbL28YKe+v+Cs7cvaNNW4QUH66dTnmvLDtyo5/4ng5/Ex+eiG9jdoQvcJig6Odu/i0pOlJTOklGVlbdkHpe3zpB6/cu9cAACgUSN0AwDc6sCJ0/rLkl36Mtn5rO32YYG6b6C/tp2Zq2kbF8hu2Ct8vY/ZR7d0uEXju49Xq6BW7l3c8b2Os7Z/+dK5PSJeGjpN6nide+cDAACNHqEbAOAWx3ML9NayPfpkTZoKS8oCdcsQm8Zc46vU4q/16rbFMmRU+Ho/s59ui7tND8Y/qMjASPcuLjvj7Fnb/3Y+a7tpW2nIH6T42yWz2b1zAgAAiNANALhEuQXF+sfKFL2/IkV5F5y1fUdfKcP8ld5LSXL5epvFpl91+pXGdRunsIAwzyxyxUvSho/Kvg4Mkwb+Vuo1ruysbQAAAA8gdAMALkpBcYn+uzZNby7do+MXnLV9w1WFOmX9Vp+lr3L5+gCfAN3V+S7d1/U+Nff38FFcA5+SNn0qmX2lfo9KfX8jWZt4dk4AAAARugEANWS3G/r650N6ddEuHTzpfNb2sCtydSZgob47us7l65v4NtGYLmN0b5d71dTW1L2LKymWNn0iWfyky+4uaw+Oku74l9T6SimwhXvnBAAAqAShGwDgJG/rL9q2drOOpR9Ri6gIde3TQ4Hx3WQYhpbtdJy1vePw+WdtG7qm+ymVBC/SDyeSpbyKxw32C9bYrmM1pssYBfsFu3fRhuF48vj3z0vHd0sBLRxnbp9/N7vTSPfOCQAAUA2EbgCA7Pn5yk6cr/3vfyS/fXsUJCno7LU0STmtY7Wky7X6py1OhRbfs1cM9Yw7IkvoEv2ctVU6UfHYzazNdH+3+3VX57sU6Bvo/sWnrnCctX1oQ1nb6WPSzgVSjzvcPx8AAEANELoBoJErSE3VgfETVJieLotMFfYJOLhPNx/8SP38m+n3/ScqIP6MbGFLlZK7U8qqeNwW/i00rts43RF3hwJ8A9y/8IyfHWF771Ln9ui+0rDpUvTV7p8TAACghgjdANCIFaSmat+dd8melyeTJIuL47zOtbfIP6U3V72i37U3aX9uxQE9PCBcD8Y/qNs63iabj839iz6+V1r2J2nrFxdM3E0aNk3qOFwyVbw2AAAAbyN0A0AjZc/P14HxE2TPy5NKSqp+gSSLYchaYOgP/5WmTLKoyLcs3EYFRml89/G6ucPN8rN48Biu9R84B+6m0dLgZ6Xud0hmi+fmBQAAuAiEbgBopLIT56soPb3Gr7MYUni21G+7oeU9TGrTpI0mdp+o69tfL1+zb9UDXKoBT0ob/y35WB1HgV35gOPfAQAA6iBCNwA0Uic+/o9kNkt2e41fazdJNyf7asRvnteo2FHyMXvgfydF+dL69yWLVeozqaw9sLk0ZrbUsgdnbQMAgDqP0A0AjdDprb+oYPuOi3692ZBapRcotqC9+wN3SbH083+lpJlS9iHJGix1v10KCC3rE9PfvXMCAAB4iLm2FwAA8J5zZ22/8PcFbhmvIDXVLeNIOnvW9jfSO/2keY84ArckFeSUf0I5AABAPcGdbgBoJDamndSs73ZoXeoJjTp2yi1j2nPz3DKO9q1yHP91cL1ze9xIaej/SRHd3DMPAACAlxG6AaCB230kRy8v3KlF2444Gsz5Kmy6xy1jm4MCL22AjM3S9zOkPUuc29v0kYbNkNr2vbTxAQAAahmhGwAaqEOnzuj1xbv0xcaDshuSzKflF/qDbM1XKzPztJR06XNY27W7tAG2f+McuMO6OM7ajhvJWdsAAKBBIHQDQANzMq9Qby/bo3+v2a/CYrtMljz5ha6SNXS1ZC6QIWlfpEmp4VLbo46HotWYySRrl86ydelyaYvt96i0/h+SX6A0+PdSjzs5axsAADQohG4AaCBOFxbrw1Wpend5inIKimWy5MgavlJ+zdZI5sJy/b/rbdavE2t+XJgkyTAUeu/Y6vfPz5JWv+k4/mvQU2XttmDpvq+ksM6ctQ0AABokQjcA1HOFxXbNXp+mN77fo2O5BTL5ZMkasUK+TdfKZC52+Trr8KEybdgkHT0hlZRUf0KLRb4REQoeParqvkX5jjvZK1+VzpyQfPyly++VgluW9WnZs/pzAwAA1DOEbgCop+x2Q99sTteri3Yp7cRpmXxOyRqZJN+Q9TKZKw7RJpk0ImaEJvaYqLhmcSqIS9W+O++SPS+vesHbYpE5MFDRH34gs81WyeJKHGdtL5spZR88r71YSlstxd9Ww3cLAABQPxG6AaCeMQxDy3cd1UsLdmpbRrZMvscdYbvpRplMFQdns8mshNgETegxQe1Cyh5+Zo2NVeyc2Up7cLyK0tMdDy8zKtjkfbbdNyJC0R9+IL+YGFeLk3YkSkufl47uOH8Aqfsdjn3bobEX/+YBAADqGUI3ANQjyWkn9eKCHVqTckImv6OytVwmn5BNMpkq3pvtY/LRDe1v0ITuExQdHF1hH7+YGLWbn6js+d/pxMf/UcG27eX6WLt0Vui9YxU8epTrO9xpa6RFf5QOrnNu7zjccdZ2ZPcavVcAAICGgNANAPXAnkzHWdsLfzkis98R2aKWyid4s0ymih897mP20S0dbtH47uPVKqhVleObbTY1vfUWNb31FuVv26b8lBRlZWQopGVL2dq1k61r16oXmbbGOXC3vkoaNl2K6V/NdwkAANDwELoBoA5LP3VGbyzZrc83HJD80mVrtVS+wVtd9rdarLqt4216IP4BRQZGXtSctq5d5de5s/IzMxUcHi6z2Vy9F/aZLK39u2QLcdzZ7jSas7YBAECjR+gGgDroZF6h3lm+V/9cvU/FPmnya/W9fJuU/9j3Of4+/vpV3K80Ln6cWvi38OzicjOlFa9IFl9pxJ/K2n39pXGJUrMYztoGAAA4i9ANAHXI6cJiffTDPv19+V7lmfbK2nKprEE7XfYP8AnQ3Z3v1n3d7lOoLdQ9i7CXSPt+kO3QLul0nOPj4WaLlJ8t/fiWtPotqShPMvtKvSc4PxiteXv3rAEAAKCBIHQDQB1QVGLXZ+sP6K/f79aJku3yC1+qwMA9Lvs38W2iMV3GaGzXsQqxhrhvIdvmSQueljk7XU1LJ4uS2g+Wdi2QTh8v62vxkw5v5mnkAAAAlSB0A0AtstsNJW7J0CuLdujgmc3yC/teAQH7XPYPsYZobJexurvL3Qr2C3bvYrbNk+bcJ+mCh7PlpEubPin72uwrXfmANPApKSjcvWsAAABoYAjdAFALDMPQyt3H9OLC7dpxar2sLZYqIDzNZf9QW6ju73a/7ux0pwJ9A92/IHuJtOBplQvcF4q/XRryB+5uAwAAVBOhGwC8bNOBU5r13Xb9lLlSfi2WKiD6kMu+Lfxb6IFuD+j2uNsV4BvguUXtXy1lp1fdr9c4AjcAAEANELoBwEv2ZObqlYXbtSRtifxaLJV/m8Mu+0YEROjB+Ad1a8dbZfOxeX5xuUfc2w8AAACSCN0A4HEZWWf0+uKd+nJ3onyaL5V/60yXfVsFtdL47uN1U/ub5Gfx894igyLc2w8AAACSCN0A4DGnThfq7WU79fHWr2RutlTWqGMu+0Y3idaE7hN0ffvr5Wv29eIqz2rbTwqOkrIzVPG+bpPjett+3l4ZAABAvUboBgA3O1NYovdX7dL7yXNkD14qn8gTLvu2C2mniT0mamTMSPmYa/E/yWaLNPLFs08vN8k5eJsc/xg5y9EPAAAA1UboBgA3KSqx69N1e/XG2k9UELRE5hZZMrvo27FZR03qMUnXRV8nS10Jsl1vlH71b8dTzM9/qFpwlCNwd72x9tYGAABQTxG6AeAS2e2Gvtqcqpd++JdyrItlbpbjMmx3Ce2iyT0na3CbwTKbXPWqRV1vlDonyL7vB2Uf2qXgVnEyx/TnDjcAAMBFInQDwCVYvCNNzy//h477LJY5KNdl2O7Roocm95ysAa0GyGQyeXWNNWa2SDHXKD8gTsHh4ZK5Dv5wAAAAoJ4gdAPARViz76D+sPRdHTYWyWQ77TJsXxF+hSb3nKy+LfvW/bANAAAAtyN0A0AN/HzokH7//TvaX7xQJku+XMXoPpF9NLnnZPWO7O3V9QEAAKBuIXQDQDXsyMzQM9+/pd1nFspkKZDJxRbn/q3666EeD+my8Mu8uj4AAADUTYRuAKhEyokM/W7Jm9qWt0Amc5HLsH1t62s1qcckdQ/r7t0FAgAAoE4jdANABfafStczS9/UlqwFkrlYrh40Pix6mCb1mKQuzbt4d4EAAACoFwjdAHCetKyD+kPSm0o+uVAylaiiJ6SZZNLImJGa2GOiOjbr6P1FAgAAoN4gdAOApLTsNE1f8abWH1skmeyq6AlpFpNFCe0SNKH7BMWGxHp/kQAAAKh3CN0AGrXUrFT96Yc3tTbze5dh28fkoxs73KgJ8RPUJriN9xcJAACAeovQDaBR2n1yt15e+7Z+PLxUMhkVhm1fs69u6XCLxncfr6igKO8vEgAAAPUeoRtAg1VYXKxPf05SWvZhRQdHakzPa5WSvUevrXtbPx5JcnSqIGxbLVbdHne7xnUbp8jASK+uGQAAAA2Lx0P3zJkz9fvf/16PP/64Xn/9dU9PBwCSpJdXfq7/7P6rDMup0rZXN/tI5mKXr7FZbLqz050aFz9OLfxbeGGVAAAAaOg8GrrXr1+v9957Tz169PDkNADg5OWVn+tfe5+TzBfcyHYRuAN9AnV3l7s1tutYhdpCvbJGAAAANA4uTp69dLm5ubrnnnv0/vvvq1mzZp6aBgCcFBYX6z+7/ypJMlXw0fHzBfkG6aGeD2nh7Qv1+BWPE7gBAADgdh670/3www8rISFBw4YN0wsvvOCyX0FBgQoKCkq/zs7OliTZ7XbZ7XZPLc8t7Ha7DMOo8+tEw0C9Vc8nPy+TYTlV0VZtJ/3DR+nFwc+qiV8TSeL39QLUG7yJeoO3UGvwJuqt4avun61HQvdnn32mjRs3av369VX2nTlzpmbMmFGu/ejRo8rPz/fE8tzGbrcrKytLhmHIbPbYhwYASdRbdf2Ytqpa/ZrZO+rMqTM6ozMeXlH9RL3Bm6g3eAu1Bm+i3hq+nJycavVze+g+cOCAHn/8cS1atEg2m63K/s8884ymTp1a+nV2drbatGmjsLAwBQcHu3t5bmW322UymRQWFsZfJHgc9VY5wzA0e9dsrcn+qlr94yJjFB4e7tlF1WPUG7yJeoO3UGvwJuqt4atO3pU8ELo3bNigzMxM9erVq7StpKREK1as0FtvvaWCggJZLJbSa1arVVartdw4ZrO5XhSnyWSqN2tF/Ue9VaygpEAvrHlBX+35qsq+hiGZS5rqnp6D+X2sAvUGb6Le4C3UGryJemvYqvvn6vbQPXToUG3ZssWp7YEHHlDnzp319NNPOwVuALhUh/MOa8qyKdp6fGu5a4bh/DA1w3D8c2zcY/Lz8fiJiQAAAID7Q3eTJk0UHx/v1BYYGKjmzZuXaweAS7HhyAZNTZqqE/knyl2Lb9pfvxzfKsOSVdpmLmmqsXGP6akBd3hzmQAAAGjEuNUDoN4xDEOzd87Wi+teVLHhfPa2v4+/Xuj/gobHDFdhcbE+/TlJadmHFR0cqTE9r+UONwAAALzKK999JiUleWMaAI1AZfu32zRpozcGv6GOzTpKkvx8fDSu1zAvrxAAAAAowy0fAPXG4bzDmpo0VVuObSl3rX9Uf7048EWFWENqYWUAAABAxQjdAOqFjUc2akrSlAr3b0/oPkGPXPaILGYe1AgAAIC6hdANoE6rav/28/2f14iYEbW0OgAAAKByhG4AdVZBSYH+tOZP+nLPl+WutQ5qrTeGvKG4ZnG1sDIAAACgegjdAOqkI3lHNCVpCvu3AQAAUK8RugHUORuPbNTUpKk6nn+83LXx8eP16OWPsn8bAAAA9QKhG0CdYRiG5uyco1nrZrF/GwAAAA0CoRtAnVBYUqg/rf2T5u6eW+4a+7cBAABQXxG6AdS6I3lHNDVpqjYf21zuWr+ofnpp4Evs3wYAAEC9ROgGUKuSM5M1ZdmUCvdvPxj/oB67/DH2bwMAAKDeInQDqBWGYejzXZ9r5rqZKraX37/9XP/nNDJmZC2tDgAAAHAPQjcAryssKdSf1/5ZX+z+oty1VkGt9MbgN9QptFMtrAwAAABwL0I3AK9i/zYAAAAaE0I3AK9JzkzW1KSpOnbmWLlrD8Q/oMcvf5z92wAAAGhQCN0AvGLOzjmu92/3e04jY9m/DQAAgIaH0A3Ao9i/DQAAgMaM0A3AYzJPZ2pK0hRtPlp+/3bfln310sCX1NTW1PsLAwAAALyE0A3AIzZlbtKUpCkV79/u9oAeu+Ix+Zj5TxAAAAAaNr7jBeB2n+/6XH9e+2f2bwMAAKDRI3QDcBv2bwMAAADOCN0A3CLzdKamJk3Vz0d/Lnft6pZX6+WBL7N/GwAAAI0OoRvAJWP/NgAAAFAxvgsGcElc7d+2WWx6rv9zGhU7qpZWBgAAANQ+QjeAi1JYUqiZ62bqf7v+V+4a+7cBAAAAB0I3gBo7evqopiRNqXD/dp+WffTKwFfYvw0AAACI0A2ghjZlbtLUpKk6euZouWvjuo3T41c8zv5tAAAA4Cy+MwZQbf/b9T/9ae2fKty/PaPfDI1uN7qWVgYAAADUTYRuAFUqKinSzHUz9fmuz8tdaxXUSq8Pfl2dQzvXwsoAAACAuo3QDaBSR08f1dSkqdp0dFO5a31a9tHLA19WM1sz7y8MAAAAqAcI3QBc+vnoz5qybEqF+7fv73q/nuj1BPu3AQAAgErw3TKACn2x6wv9ae2fVGQvcmq3WWya3m+6Etol1NLKAAAAgPqD0A3ASVFJkWatm6U5u+aUuxYVGKU3hrzB/m0AAACgmgjdAEpVun87so9eHsT+bQAAAKAmCN0AJDn2b09dNlWZZzLLXbuv632a0msK+7cBAACAGuI7aADs3wYAAAA8hNANNGJFJUV6cf2Lmr1zdrlrUYFRen3w6+rSvEstrAwAAABoGAjdQCN17MwxTU2aquTM5HLX2L8NAAAAuAehG2iENh/drCnLplS4f3ts17Ga2msq+7cBAAAAN+C7aqCRmbt7rl5Y80K5/dtWi1XT+03X9e2ur6WVAQAAAA0PoRtoJNi/DQAAAHgfoRtoBI6dOaYnk57UxsyN5a5dFXmVXhn0Cvu3AQAAAA8gdAMN3OajmzUlaYoyT7N/GwAAAPA2vtMGGrAvd3+p59c8X+H+7Wl9p+mG9jfU0soAAACAxoHQDTRAle3fbhnYUq8Pfl1dm3ethZUBAAAAjQuhG2hgqtq//fKglxVqC62FlQEAAACND6EbaEC2HN2iJ5KeqHD/9r1d7tWTVz7J/m0AAADAi/juG2gg2L8NAAAA1D2EbqCeK7IX6aV1L+mznZ+Vu8b+bQAAAKB2EbqBeqyy/du9I3vrlUGvsH8bAAAAqEWEbqCeqmr/9tQrp8rX7FsLKwMAAABwDqEbqAdKigv10+Z/68CRnWoT0UkHA0P053WzVGgvdOrH/m0AAACgbiF0A3XcklUzNWvXJzpiMTkaMhdU2C8yMFKvD35d3Zp38+LqAAAAAFSG0A3UYUtWzdTUPZ/IMFfe78qIK/XKoFfU3L+5dxYGAAAAoFoI3UAdVVJcqFm7zgZuk8llv7s73amnrnqa/dsAAABAHUToBuqg00Wn9f7K/yv7SHklrrO2JHADAAAAdRShG6gjiuxF+jH9R32b8q2SDiTpTPGZar3uaHaaZxcGAAAA4KIRuoFaZBiGfj76s75N+VaL9i3SyYKTNR4jLDjaAysDAAAA4A6EbqAWpJxK0bcp32p+6nwdyj10UWOYDEMRdumK7mPdvDoAAAAA7kLoBrwk83Smvkv9Tokpidp+YnuV/S2GoY4mq3YYBY6G8x6mZjIMSdLTcffI4uPnkfUCAAAAuHSEbsCDcgpztGT/EiWmJmpdxjoZMqp8TY/8AiX4NNeIa/6o5p1Gn3dOd1mfCLsjcA+75hkPrh4AAADApSJ0A25WWFKolYdWKjElUcsPLFehvbDK18QUFikhL08JvuFqM+TPUufrS+9sD7vmGQ2++kn9tPnfOnBkp9pEdNKVPe7jDjcAAABQDxC6ATewG3ZtOLJBiSmJWrx/sbILs6t8TYviEo3Ky1NCbp662sJluvbPUs+7JUv5v5YWHz/1vuxBtc3MVHh4uMxmswfeBQAAAAB3I3QDl2DXyV1KTEnU/NT5Opx3uMr+gb6BGho9VAntEtRn7ceyHJsvXTtN6j1R8rV5YcUAAAAAvInQDdRQRm6G5qfOV2Jqonaf3F1lfx+ZdY3dVwkDp+vatsNk8zkbrofHSaNmSrYQD68YAAAAQG0hdAPVkFWQpUX7FykxJVEbjmyo1muuCGyjhMwDGn4sTU3tdul4htT+vLvZgS08tFoAAAAAdQWhG3ChoKRAyw8sV2JKolYcWqFie3GVr+nQtL0SguM0escKRaX+4HzxWNV3xQEAAAA0LIRu4Dwl9hKtP7JeiSmJWrJ/iXKLcqt8TURAhEbHjlZCQLTi1rwvU/K7zh3aD5WG/p8UdZlnFg0AAACgziJ0o9EzDEPbT2xXYkqiFqQuUOaZzCpf08S3iYbHDFdCuwT18g2VedEfpJ0znDu16iUNmy7FDvTMwgEAAADUeYRuNFoHcg5oforjgWipWalV9vcz+2lQm0FKiE3QgNYD5Gc5e072yX3S7sVlHZt3dNzZ7nJD6VnbAAAAABonQjcalZP5J7Vw30IlpiRq09FNVfY3yaTekb2V0C5Bw9oOU7BfsGQvkcyWsk7NYqQrH5S2fyNd+zvpsnsqPGsbAAAAQONDMkCDd6b4jJalLVNiaqJWH1qtYqPqB6J1Du2shNgEjYwdqcjASEdjQY6UNEva+oU0abnkF1D2giHPStfNkHz9PfQuAAAAANRHhG54VYnd0LrUE8rMyVd4E5uuig2Vxez+j2AX24u1JmONElMS9X3a9zpTfKbK17QKauV4IFq7BLVv2v68wQqlDR9Jy1+STh9ztK17T7rmibI+nLUNAAAAoAKEbnjNgq0ZmvHNNmVk5Ze2tQyxadoNXTUyvuUlj28YhrYe26rE1ER9l/qdTuSfqPI1IdYQjWg7Qte3v16XhV0m0/l7sO12acvn0rIXpFNpZe0mi3Tm5CWvFwAAAEDD5/bQPXPmTM2dO1c7duyQv7+/+vXrpxdffFGdOnVy91SoRxZszdCvP94o44L2w1n5+vXHG/XOvVdcdPDen71fiSmJSkxJVFpOWpX9bRabrm1zrRLaJah/VH/5WnydOxiG48Fo38+Qjmx1vtbtFmnIH6Xm7QUAAAAAVXF76F6+fLkefvhh9e7dW8XFxXr22Wc1fPhwbdu2TYGBge6eDvVAid3QjG+2yZDU/tQhtc7NVEBxgU77WHUwKFwpTVtpxjfbdF3XyGp/1PzYmWNakLpAiSmJ2np8a5X9zSazrm55tRLaJWho9FAF+rqoxWO7pXmPSWmrndvbDZaGTZOiLq/W+gAAAABA8kDoXrBggdPXH330kcLDw7VhwwYNHFj+vOKCggIVFBSUfp2dnS1Jstvtstvt7l6eW9ntdhmGUefXWdvWbk9X/OYV+n3KKnXISi93fU9IlOa1u0Zrt3fS1V2iXI6TV5SnpQeWKjElUWsPr5XdqPr3vVvzbkqITdCImBFq4d+itN3ln5lvoEwZm3Qu+htRl8sYMk1qN+jcC6uc01OoN3gT9QZvot7gLdQavIl6a/iq+2fr8T3dWVlZkqTQ0NAKr8+cOVMzZswo13706FHl5+dX8Iq6w263KysrS4ZhyGw21/Zy6qSSAwdke2yqppw8Jrsqvosdm5WhKclzVDhxmTL++posrVuXXiu2F+unYz/p+4zv9WPmjyqwF1Q4xvmi/KM0JGqIhrYcqtaBjrHsOXZl5mSW71xcIPlYz2swKyj+PtlSFijnqikqaDfCcdZ2ZgWv9TLqDd5EvcGbqDd4C7UGb6LeGr6cnJxq9TMZhnHhNlu3MQxDN910k06ePKmVK1dW2KeiO91t2rTRyZMnFRwc7KmluYXdbtfRo0cVFhbGX6QKnNixR4fuGSNz/hn5VOOutGG2yBIUqOjP/qttASc1P3W+Fu1fpFMFp6p8bTNrM42MGanRsaPVvUV35weiVeT0cZlW/UX65UsZv17t/PTxotOS2Ve6cK93LaPe4E3UG7yJeoO3UGvwJuqt4cvOzlazZs2UlZVVaXb16J3uRx55RJs3b9aqVatc9rFarbJareXazWZzvShOk8lUb9bqLflFJfp4+U7F/XaCmlUzcEuSyV6i4twcbRxzox6dIBX5Vh6c/X38NTR6qBLaJejqllfLx1yNci7Ilda8I63+q1Tg2MpgWvO2NOQPZX2sQdVab22g3uBN1Bu8iXqDt1Br8CbqrWGr7p+rx0L3o48+qnnz5mnFihVqfd7HhdFwFZfY9cXGg3p9yW7Fb16hfqdPuvhAuWtmu6HQUyXqt92s5T3Kv9pisqhfVD8ltEvQ4DaDFeAbUM3FFUob/+U4azvvvI+K+/hLFr8arhIAAAAAqsftodswDD366KP68ssvlZSUpNjYWHdPgTrGMAwt/OWwXl64U3uP5kmSfp+ySnaZZCl3SFjV7CZp1E92Le9R9pOjnmE9ldDO8UC0UFvFzweoeDC7tPULx1nbJ/eVtZss0hVjpUG/k4Iv/YxwAAAAAKiI20P3ww8/rE8//VRff/21mjRposOHD0uSQkJC5O/v7+7pUMtW7z2mFxfs1M8HTpW2tT91qMKnlFeX2ZDaHZH657bU5dfcptHtRqtNkzY1HyhzhzR3gnR4i3N715sdZ2236HDRawQAAACA6nB76H7nnXckSddee61T+0cffaRx48a5ezrUkq2HsvTSwp1aseuoU3vvmGb6vTVXSrr0OV5s+7hCeiZc/ABB4dLJtLKvYwdJw6ZLra645LUBAAAAQHV45OPlaLj2HcvTq4t36Zufne9kd4poot+O7KQhncN1as5BHXbDXPa8vJq9ID/L+SnkAaHSNY9L2+Y5wnb7wW5YFQAAAABUn8fP6UbDkJmTr79+v1ufrTugYnvZD1ZaNfXXk8PjdNNlrWQxOx58dtJ8xi1zmoMCq9cx66CUNEvaPk96dKMU2KLsWr/HpP5TJJ4YCQAAAKAWELpRqez8Ir23PEUfrErVmaKS0vbmgX56ZEgHjekTLauPRZKUcipF7215T9tTEzXLDXNb27WrvMPpE9Kq16S170klZ896X/mqNHJmWZ86dtY2AAAAgMaF0I0K5ReV6D8/7tfbSXt06nRRaXugn0UTBrTTxIHtFGR1lM+uk7v03ub3tGjfIhkypAgpNVxqe9TxULQaM5lk7dJZti5dKr5emOc4a/uHN0rP2pYkWUOk4FYXMSEAAAAAeAahG06KS+yau/GQ/rJklzKy8kvbfS0m3dOnrR4Z0kEtgqySpG3Ht+ndn9/V0gNLy43zXW+zfp1ov7hFGIZC7x1bvr2kqOys7dwjZe0+NqnPZKn/E4593AAAAABQRxC6IencWdtH9MqindqTmVvabjJJt1zWSlOui1Ob0ABJ0uajm/Xu5ne14uAKl+Nt7B6gM2ulgJNnpJISl/3KsVjkGxGh4NGjnNuP/CJ9do90MrWszWSRLr9XGvS0FMIdbgAAAAB1D6EbWpNyXC8u2KHktFNO7UM7h+v/jeikLi2DJUkbj2zUu5vf1er01S7HCvIN0t2d79bYrmMVMOiU9t15l+Mp5NUJ3haLzIGBiv7wA5ltNudrTaOlgpyyr7vc6DhrOyyuum8TAAAAALyO0N2I/ZKepZcW7NTyC87a7tW2mZ4e2VlXxYbKMAytzVirdze/q/WH17scq4lfE43tMlZjuoxRiPXssV2xzRQ7Z7bSHhyvovR0x23zio6UO9vuGxGh6A8/kF9MjJSdIQW3LOtjbSIN+q20/Rtp2AypdS83/A4AAAAAgGcRuhuh/cfz9OqiXZp3wVnbcRFB+u2IzhraJVyS9MOhH/T3n/+uTUc3uRyrmbWZ7ut2n+7qdJeC/ILKXfeLiVG7+YnKnv+dTnz8HxVs216uj7VLZ4XeO1bBo0fJnJMmzb5X2r1YenSDFNK6rGPvidJVkxwhHQAAAADqAUJ3I3I0p0BvLt2tT9emlTtre8p1cbrl8lYym6TlB5fr3Z/f1dbjW12O1dzWXA/EP6A74u5QgG9ApfOabTY1vfUWNb31FuVv3aqC9QtlP5kpc7NwWXuPkC0+Xso6JC38f9KmTyTj7APYkmZJN7113kCctQ0AAACgfiF0NwLZ+UV6f4XjrO3ThWV7q0MD/fTw4A669+po+VpMWpr2vd7b/J62nyh/N/qccP9wPdj9Qd3W8TbZfGwu+1Vo2zzZFj0tW/bZO+zZkk68J225Qtq7VCoue1q6giKkVnyEHAAAAED9RuhuwPKLSvTxmv16e9kenTzvrO2Ac2dtD4hVgJ9Zi/cv1rub39WeU3tcjtUysKXGx4/XzR1vltVirflits2T5twn6YI93TmHpZ3zy762Bkv9H5eu/rXkF1jzeQAAAACgDiF0N0AldkNzNx7U60t269CpM6Xt587afnhwBzULtOi71O/03ub3tC97n8uxWge11sQeE3VDuxvka/G9uAXZS6QFT6tc4L7Q1b+RBj7FWdsAAAAAGgxCdwNiGIYWbzuilxfu1O4Lztq+qWeUpl7XSS2b+uqblG/0jy3/0IGcAy7HigmO0cQeEzU6drR8zJdYJvtXS9npVffrNJrADQAAAKBBIXQ3EGvPnrW98YKztgd3CtNTIzqrQ4RNX+35Sh8s+0Dpea4DcIemHTSpxyQNbztcFrPFPYvL2FS9frlH3DMfAAAAANQRhO56bntGtl5asEPLdjqftX1FdFM9PbKzekYH6ovdX+jRHz5U5ulMl+N0atZJk3tO1tDooTKb3PSU8EMbpCUzpNSV1esfFOGeeQEAAACgjiB011Npx0/rtcU79fXP6TLO2yrdMTxIT43opP4dm+h/u/+np7/4SMfzj7scJ755vCb3nKxBrQfJ5K7zr4/tlpY+L237uqzNxyYVF6jifd0mKThKatvPPfMDAAAAQB1B6K5njuYU6K2lu/XpujQVlZQF2KgQm6ZcF6cR3Ztpzq7P9MLcf+tkwUmX41wWdpkm95ys/lH93Re2s9MdZ2snfywZZUeTqVmMY7/2mnckmeQcvM/OPXKW5K6PswMAAABAHUHoridy8ov0/spU/WNlitNZ280CfPXw4A666Ypm+t+ezzRq7sfKLsx2OU7vyN6a3GOyroq8yn1h+8xJadVfpLXvOp+1HRguDfqtdMX9ko+fFN3X8RTz8x+qFhzlCNxdb3TPWgAAAACgDiF013EFxSX6eE2a3l62RyfyCkvbA/wsmnBNrO7oE6qvUj7TjV9/qtyiXJfj9G3ZV5N7TlaviF7uXeDhrdI/R0v5WWVt1mCp/2OOI8DOP2u7641S5wTH08xzjzj2cLftxx1uAAAAAA0WobuOKrEb+jL5kP6yeJfTWds+ZpPG9InWvf2a69u0/+r2b2frdPFpl+MMbD1Qk3pMUs+wnp5ZaFhnKTDMEbotVumqidKAJ10f/WW2SLEDPLMWAAAAAKhjCN11jGEYWrI9Uy8v3KFdR5zvXN90WZQeGNBci9I/0z0LP1d+Sb6LUaQhbYZoUs9J6ta8mzsX53gieesry9osPtLQadKuhdK1v5OatnHffAAAAABQzxG665D1+07oxe926Kf9zg9Au7ZTmB4Y1FSrMj/X+KVzVWgvrPD1Jpk0PGa4JnafqE6hndy7uJQkacl0KX2T9NAqKTK+7FrXG9mTDQAAAAAVIHTXATsOZ+ulBTu1dIfzOdqXRzfVg9eGaGPWF3rih69UbC+u8PVmk1mjYkdpUvdJate0nXsXl57sOGs7ZVlZ2/czpHs+d+88AAAAANAAEbpr0YETp/WXxbv05aZDTmdtdwgP0gODgrTjzFf640/fqOT847fOYzFZdEP7GzSh+wS1DW7r3sUd3+s4a/uXL53bI7pLvSe6dy4AAAAAaKAI3bXgWG6B3lq6R5+s3V/urO17BtqUVjxPL/2yQHbDXuHrfcw+urnDzRofP16tm7R27+KyM6TlL0ob/+181nbTttKQP0rxt0lms3vnBAAAAIAGitDtRbkFxXp/RYr+sTJFeeedtd00wFd39vNRpuVbvbtniQwZFb7ez+ynWzveqvHdxysyMNL9Czzyi/T+UKm47GnpCgyTBv5W6jXOcdY2AAAAAKDaCN1eUFBcok/WpOmtC87a9ve16OY+hrJt3+rTQ8tcvt5msemOTndoXLdxCg8I99xCw7pILTpKhzdLfk3Kztq2BnluTgAAAABowAjdHlRiN/RV8iG9VsFZ2yOuKFRB0Lf69sgql6/39/HX3Z3v1n1d71Nz/+ZuXlyx44nkHYeVtZnN0nUzpN2LHWdtB7Zw75wAAAAA0MgQui9S/rZtyt+7VwWHDys7MlK29u1l69pVkuOs7aU7MvXSgp3aeSTH6XUDuudITRdrxbF1Ul7FYwf5BmlMlzEa22WsmtqaunfhhiFt+9rxkLTje6Txi6U2V5Vdbz/E8QsAAAAAcMkI3TVgz89XduJ8nfj4PyrYvqO0/fTZf1q7dFb2qFv1YmEb/Xjw/ERt6PK44/Jr8b02nUyWjlU8frBfsO7teq/u6XKPgv2C3f8GUpafPWt7Y1nbkunSA/PdPxcAAAAAgNBdXQWpqTowfoKK0tNlmEwyVdDnzPad8tv+Z032b6b9/ScpPaiFOsakKzB8qfbk/CKdrHjsZtZmuq/bfbqr010K8vPA/un0TY5wnXLBvvHovtLQ/3P/fAAAAAAASYTuailITdW+O++SPc9x99pkVPx0cfPZp443z8/SX1e+rr/+uo2S/fdJORV2V3Nbcz0Q/4DuiLtDAb4B7l/48b3S0hekX+Y6t4d3k4ZNkzoOl0wV/fgAAAAAAOAOhO4q2PPzdWD8BEfgLimp+gWSfAy7TIUFGv/hHk2ZZFGRr3OwDQ8I14PxD+q2jrfJ5mPzxLKlI9ukdwdI9uKytqbR0uBnpe53SGaLZ+YFAAAAAJQidFchO3G+itLTa/w6iyGFZ0v9thta3sMRuqMCozS++3jd3OFm+Vk8fOZ1eBepdW8p7UcpoIU08CnpygckH6tn5wUAAAAAlCJ0V+HEx/9xHKVlt9f4tXaTNOonu/b2i9akHpN0ffvr5Wv2df8ii85IOxKl7reXtZlM0rAZjn3cfR+WrE3cPy8AAAAAoFKE7krkb9vm9JTymjIbUrsj0uedXlJQx+5uXNlZJcXSz59KSbOk7ENSQKjzcV/RfRy/AAAAAAC1wlzbC6jLClJS3TJOyf40t4xTyjCkbfOkd/pK8x51BG5J+v55xzUAAAAAQJ3Ane5KnHta+SWPk+uecSRJqSscx38d2uDcHjfKcfwXTyMHAAAAgDqD0F0Jc2Cge8YJcsM4GT9LS2ZIe793bm9ztTRsutS276XPAQAAAABwK0J3JaztYt00TrtLG+DoTundgc5t4V2lodOkuBHc3QYAAACAOoo93ZWwde0qa5fOjqeXXwyTSdauXWTr0uXSFhLWSeowzPHvIdHSLe9KD62SOo0kcAMAAABAHUborkLovWMv6rgwSZJhOF5fE/lZ0rr3yz8Qbdh0aeQs6dGfpJ53SWbLxa0JAAAAAOA1fLy8CsEJo3Xs7bdVdOSIVFJS/RdaLPKNiFDw6FHV61+UL63/h7TyVenMCalJpNTlhrLrkd0dvwAAAAAA9QZ3uqtgttnU5oN/OB6qZqnm3WWLRebAQEV/+IHMNlvlfe0lUvLH0pu9pEXPOgK3JCW9yPFfAAAAAFDPEbqrwRobq9g5s+UbEeFocLWP+my7b0SEYufMll9MjOtBDUPa/q30Tj/p64el7IPnBpF63Cnd9TH7tQEAAACgnuPj5dXkFxOjdvMTlT3/O534+D8q2La9XB9rl84KvXesgkePqvwO974fHGdtH1zn3N5xhOOs7ch49y4eAAAAAFArCN01YLbZ1PTWW9T01luUv22b8lNSlJWRoZCWLWVr1062rl2rHuTYbumfo53bWl8lXTdDatvPMwsHAAAAANQKQvdFsnXtKr/OnZWfmang8HCZq3usWIuOUtebpG1fS2FdHHe2O43io+QAAAAA0AARuj0pN1Pa8C9pwFTnI76G/J/jo+Qc/QUAAAAADRqh+2LZS6R9P8h2aJd0Ok6K6V8WoPOzpNVvSj/+TSrKk5q2cQTsc1p0cPwCAAAAADRohO6LsW2etOBpmbPT1fRcW3CUdN0LUk5G2Vnb5/zwhuOJ5HyEHAAAAAAaFUJ3TW2bJ825T9IFZ2hnp0tfPOjcZvaVrnxAGvgUgRsAAAAAGiFCd03YS6QFT6tc4K5I9zukwc9KobEeXxYAAAAAoG4idNfE/tWOO9pVueGvUq/7Pb8eAAAAAECdVs1zriBJyj1SvX5+gZ5dBwAAAACgXiB010RQhHv7AQAAAAAaNEJ3TbTt53hKuVw9FM0kBbdy9AMAAAAANHqE7powW6SRL5794sLgffbrkbPKzusGAAAAADRqhO6a6nqj9Kt/S8EtnduDoxztXW+snXUBAAAAAOocnl5+MbreKHVOkH3fD8o+tEvBreJkjunPHW4AAAAAgBNC98UyW6SYa5QfEKfg8HDJzIcGAAAAAADOSIoAAAAAAHgIoRsAAAAAAA8hdAMAAAAA4CGEbgAAAAAAPITQDQAAAACAhxC6AQAAAADwEEI3AAAAAAAeQugGAAAAAMBDCN0AAAAAAHgIoRsAAAAAAA8hdAMAAAAA4CEeC91/+9vfFBsbK5vNpl69emnlypWemgoAAAAAgDrJI6F79uzZeuKJJ/Tss88qOTlZAwYM0KhRo5SWluaJ6QAAAAAAqJN8PDHoa6+9pvHjx2vChAmSpNdff10LFy7UO++8o5kzZzr1LSgoUEFBQenX2dnZkiS73S673e6J5bmN3W6XYRh1fp1oGKg3eBP1Bm+i3uAt1Bq8iXpr+Kr7Z+v20F1YWKgNGzbod7/7nVP78OHDtXr16nL9Z86cqRkzZpRrP3r0qPLz8929PLey2+3KysqSYRgym9keD8+i3uBN1Bu8iXqDt1Br8CbqreHLycmpVj+3h+5jx46ppKREERERTu0RERE6fPhwuf7PPPOMpk6dWvp1dna22rRpo7CwMAUHB7t7eW5lt9tlMpkUFhbGXyR4HPUGb6Le4E3UG7yFWoM3UW8Nn81mq1Y/j3y8XJJMJpPT14ZhlGuTJKvVKqvV6tRPknJzc+t8cdrtduXm5srf37/OrxX1H/UGb6Le4E3UG7yFWoM3UW8NX25urqSyDOuK20N3ixYtZLFYyt3VzszMLHf3uyLnbtG3adPG3UsDAAAAAMCtcnJyFBIS4vK620O3n5+fevXqpcWLF+uWW24pbV+8eLFuuummKl8fFRWlAwcOqEmTJhXeGa9Lzn0U/sCBA3X+o/Co/6g3eBP1Bm+i3uAt1Bq8iXpr+AzDUE5OjqKioirt55GPl0+dOlVjx47VlVdeqb59++q9995TWlqaHnrooSpfazab1bp1a08sy2OCg4P5iwSvod7gTdQbvIl6g7dQa/Am6q1hq+wO9zkeCd133nmnjh8/rueee04ZGRmKj4/X/Pnz1bZtW09MBwAAAABAneSxB6n95je/0W9+8xtPDQ8AAAAAQJ3HY/QugdVq1bRp05yevg54CvUGb6Le4E3UG7yFWoM3UW84x2RU9XxzAAAAAABwUbjTDQAAAACAhxC6AQAAAADwEEI3AAAAAAAeQugGAAAAAMBDCN0AAAAAAHhIvQjdM2fOVO/evdWkSROFh4fr5ptv1s6dO536GIah6dOnKyoqSv7+/rr22mv1yy+/lF4/ceKEHn30UXXq1EkBAQGKjo7WY489pqysLKdxbrzxRkVHR8tms6lly5YaO3as0tPTq1zjli1bNGjQIPn7+6tVq1Z67rnndP6D4TMyMjRmzBh16tRJZrNZTzzxRLXf/9/+9jfFxsbKZrOpV69eWrlypdP1uXPnasSIEWrRooVMJpM2bdpU7bFRHvVWeb1Nnz5dnTt3VmBgoJo1a6Zhw4Zp7dq11R4fzqi3yutt3LhxMplMTr+uvvrqao+PMtRa5bV2YZ2d+/Xyyy9Xew6Uod4qr7cjR45o3LhxioqKUkBAgEaOHKndu3dXe3w4a8z1tmLFCt1www2KioqSyWTSV199Va4PWaH21YvQvXz5cj388MNas2aNFi9erOLiYg0fPlx5eXmlfV566SW99tpreuutt7R+/XpFRkbquuuuU05OjiQpPT1d6enpeuWVV7Rlyxb985//1IIFCzR+/HinuQYPHqw5c+Zo586d+uKLL7R3717dfvvtla4vOztb1113naKiorR+/Xq9+eabeuWVV/Taa6+V9ikoKFBYWJieffZZ9ezZs9rvffbs2XriiSf07LPPKjk5WQMGDNCoUaOUlpZW2icvL0/9+/fXrFmzqj0uXKPeKq+3uLg4vfXWW9qyZYtWrVqlmJgYDR8+XEePHq32PChDvVVeb5I0cuRIZWRklP6aP39+tedAGWqt8lo7v8YyMjL04YcfymQy6bbbbqv2PChDvbmuN8MwdPPNNyslJUVff/21kpOT1bZtWw0bNszp9wfV15jrLS8vTz179tRbb71VaR+yQi0z6qHMzExDkrF8+XLDMAzDbrcbkZGRxqxZs0r75OfnGyEhIcbf//53l+PMmTPH8PPzM4qKilz2+frrrw2TyWQUFha67PO3v/3NCAkJMfLz80vbZs6caURFRRl2u71c/0GDBhmPP/54ZW+x1FVXXWU89NBDTm2dO3c2fve735Xrm5qaakgykpOTqzU2qod6q7jezsnKyjIkGUuWLKnWHKgc9eZcb/fff79x0003VWs81Ay1Vvl/22666SZjyJAh1RofVaPeyupt586dhiRj69atpdeLi4uN0NBQ4/3336/WHKhcY6q380kyvvzyS5fXyQq1p17c6b7QuY95hIaGSpJSU1N1+PBhDR8+vLSP1WrVoEGDtHr16krHCQ4Olo+PT4XXT5w4oU8++UT9+vWTr6+vy3F+/PFHDRo0SFartbRtxIgRSk9P1759+2ry1pwUFhZqw4YNTu9LkoYPH17p+4J7UW+u662wsFDvvfeeQkJCavRTWbhGvZWvt6SkJIWHhysuLk4TJ05UZmbmRc+LMtSa6/+2HTlyRImJieXucOHiUW9l9VZQUCBJstlspdctFov8/Py0atWqi54bZRpLvaH+qHeh2zAMTZ06Vddcc43i4+MlSYcPH5YkRUREOPWNiIgovXah48eP6/nnn9fkyZPLXXv66acVGBio5s2bKy0tTV9//XWlazp8+HCFc5+/totx7NgxlZSU1Oh9wb2ot4rf17fffqugoCDZbDb95S9/0eLFi9WiRYuLnhsO1Fv59zVq1Ch98sknWrp0qV599VWtX79eQ4YMKf2mFReHWqv8ff3rX/9SkyZNdOutt170vChDvTm/r86dO6tt27Z65plndPLkSRUWFmrWrFk6fPiwMjIyLnpuODSmekP9Ue9C9yOPPKLNmzfrv//9b7lrJpPJ6WvDMMq1SY59FQkJCerataumTZtW7vpTTz2l5ORkLVq0SBaLRffdd1/pgw66deumoKAgBQUFadSoUZXOXVG7KytXriwdNygoSJ988kmN3xfcj3qr+H0NHjxYmzZt0urVqzVy5Ej96le/4u6jG1Bv5d/XnXfeqYSEBMXHx+uGG27Qd999p127dikxMbFac6Ni1Frl/y/98MMPdc899zjdicTFo96c35evr6+++OIL7dq1S6GhoQoICFBSUpJGjRoli8VSrbnhWmOsN9R9FX9Woo569NFHNW/ePK1YsUKtW7cubY+MjJTk+ElRy5YtS9szMzPL/VQpJydHI0eOVFBQkL788ssKPwrSokULtWjRQnFxcerSpYvatGmjNWvWqG/fvpo/f76KiookSf7+/qXzX/hTqnMB5ML5XbnyyiudniQYEREhq9Uqi8VS4djVHRcXj3pz/b4CAwPVoUMHdejQQVdffbU6duyoDz74QM8880y15kd51Jvr93W+li1bqm3btjzl9xJQa67fl+T4xnbnzp2aPXt2teZE5ai3it9Xr169tGnTJmVlZamwsFBhYWHq06ePrrzyymrNjYo1tnpD/VEv7nQbhqFHHnlEc+fO1dKlSxUbG+t0PTY2VpGRkVq8eHFpW2FhoZYvX65+/fqVtmVnZ2v48OHy8/PTvHnzqvUT7HM/hTr3Uca2bduWho1WrVpJkvr27asVK1aosLCw9HWLFi1SVFSUYmJiqvUe/f39S8ft0KGDmjRpIj8/P/Xq1cvpfUnS4sWLnd4X3It6q3m9GYbBx30vEvVWs3o7fvy4Dhw44PRNE6qHWqterX3wwQfq1asXz6m4RNRb9eotJCREYWFh2r17t3766SfddNNN1ZobzhprvaEe8dQT2tzp17/+tRESEmIkJSUZGRkZpb9Onz5d2mfWrFlGSEiIMXfuXGPLli3G3XffbbRs2dLIzs42DMMwsrOzjT59+hjdu3c39uzZ4zROcXGxYRiGsXbtWuPNN980kpOTjX379hlLly41rrnmGqN9+/ZOTxu80KlTp4yIiAjj7rvvNrZs2WLMnTvXCA4ONl555RWnfsnJyUZycrLRq1cvY8yYMUZycrLxyy+/VPreP/vsM8PX19f44IMPjG3bthlPPPGEERgYaOzbt6+0z/Hjx43k5GQjMTHRkGR89tlnRnJyspGRkVHj32tQb5XVW25urvHMM88YP/74o7Fv3z5jw4YNxvjx4w2r1er0FFZUH/Xmut5ycnKMJ5980li9erWRmppqLFu2zOjbt6/RqlWr0veO6qPWKv9/qWE4TmMICAgw3nnnnRr93qI86q3yepszZ46xbNkyY+/evcZXX31ltG3b1rj11ltr/PsMh8Zcbzk5OaWvk2S89tprRnJysrF///7SPmSF2lcvQrekCn999NFHpX3sdrsxbdo0IzIy0rBarcbAgQONLVu2lF5ftmyZy3FSU1MNwzCMzZs3G4MHDzZCQ0MNq9VqxMTEGA899JBx8ODBKte4efNmY8CAAYbVajUiIyON6dOnlzsCoKK527ZtW+XYb7/9ttG2bVvDz8/PuOKKK0qPPzjno48+qnDsadOmVTk2yqPeXNfbmTNnjFtuucWIiooy/Pz8jJYtWxo33nijsW7duirHRcWoN9f1dvr0aWP48OFGWFiY4evra0RHRxv333+/kZaWVuW4KI9aq/z/pYZhGO+++67h7+9vnDp1qsrxUDnqrfJ6e+ONN4zWrVuX/rftD3/4g1FQUFDluKhYY643V+u+//77S/uQFWqfyTDOfiYCAAAAAAC4Vb3Y0w0AAAAAQH1E6AYAAAAAwEMI3QAAAAAAeAihGwAAAAAADyF0AwAAAADgIYRuAAAAAAA8hNANAAAAAICHELoBAAAAAPAQQjcAAAAAAB5C6AYAAAAAwEMI3QAAAAAAeMj/B9qa0G8FehN8AAAAAElFTkSuQmCC",
"text/plain": [
"