Source code for vtools.functions.read_dss

from vtools.functions.interpolate import rhistinterp
from vtools.data.vtime import days, minutes
from pyhecdss import get_ts, DSSFile
from pathlib import Path
import pandas as pd
import re
import os


dss_e2_freq = {"1HOUR": "H", "1DAY": "D", "1MON": "M"}


[docs] def check_exclude(pathname, exclude_pathname): """ Returns True if pathname matches the exclude_pathname pattern. Wildcards (*) in exclude_pathname are supported. """ path_parts = pathname.split("/")[1:-1] exclude_parts = exclude_pathname.split("/")[1:-1] for p, ex in zip(path_parts, exclude_parts): if not ex or ex == "": continue # skip empty (wildcard) parts # Convert wildcard pattern to regex pattern = "^" + ex.replace("*", ".*") + "$" if re.match(pattern, p): print( f"\t\tSkipping path: {pathname}\n\t\t\t{p} matches {ex} from exclude_pathname: \n\t\t\t{exclude_pathname}" ) return True return False
[docs] def read_dss( filename, pathname, dt=minutes(15), p=2.0, start_date=None, end_date=None, exclude_pathname=None, ): """ Reads in a DSM2 dss file and interpolates Outputs an interpolated DataFrame of that variable Parameters ---------- filename: str|Path Path to the DSS file to read pathname: str|list Pathname(s) within the DSS file to read. Needs to be in the format '/A_PART/B_PART/C_PART/D_PART/E_PART/F_PART/' (e.g. '//RSAN112/FLOW////') """ ts_out_list = [] col_names = [] if isinstance(pathname, str): pathname = [pathname] for path in pathname: if len(path.split("/")[1:-1]) != 6: raise ValueError(f"Invalid DSS path: {path}, needs 6 parts (A-F)") ts = get_ts(str(filename), *pathname) for path in pathname: print(f"\tReading path: {path}") for i, tsi in enumerate(ts): ts_path = tsi[0].columns.values[0] if exclude_pathname is None or ( exclude_pathname is not None and not check_exclude(ts_path, exclude_pathname) ): # if not an excluded path, then carry on path_lst = (ts_path).split("/") path_e = path_lst[5] # Set default start_date and end_date to cover the full period of record if not specified tt_full = tsi[0] if start_date is None: start_date = tt_full.index[0].to_timestamp() if end_date is None: end_date = tt_full.index[-1].to_timestamp() if tt_full.index[0].to_timestamp() > end_date or ( tt_full.index[-1].to_timestamp() < start_date ): raise ValueError( f"File: {filename} does not cover the dates requested. \n\tRequested dates are: {start_date} to {end_date}, \n\tand the file covers {tt_full.index[0]} to {tt_full.index[-1]}" ) tt = tt_full[start_date:end_date] pidx = pd.period_range( tt.index[0], tt.index[-1], freq=dss_e2_freq[path_e] ) ptt = pd.DataFrame(tt.values[:, 0], pidx) # Interpolate with rhistinterp if p > 0: col_data = rhistinterp(ptt, dt, p=p) elif p == 0: col_data = rhistinterp(ptt, dt) else: col_data = tsi[0] ts_out_list.append(col_data) col_names.append(ts_path) if ts_out_list: ts_out = pd.concat(ts_out_list, axis=1) ts_out.columns = col_names ts_out = ts_out.copy() # Defragment the DataFrame else: with DSSFile(filename) as dssh: dfcat = dssh.read_catalog() raise ValueError( f"Warning: DSS data not found for {path}. Preview of available paths in {filename} are: {dfcat}" ) return ts_out